Hiraga Shin-Ichiro, Itokazu Takahide, Nishibe Mariko, Yamashita Toshihide
Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
Inflamm Regen. 2022 May 3;42(1):15. doi: 10.1186/s41232-022-00199-6.
Neuropathic pain is often chronic and can persist after overt tissue damage heals, suggesting that its underlying mechanism involves the alteration of neuronal function. Such an alteration can be a direct consequence of nerve damage or a result of neuroplasticity secondary to the damage to tissues or to neurons. Recent studies have shown that neuroplasticity is linked to causing neuropathic pain in response to nerve damage, which may occur adjacent to or remotely from the site of injury. Furthermore, studies have revealed that neuroplasticity relevant to chronic pain is modulated by microglia, resident immune cells of the central nervous system (CNS). Microglia may directly contribute to synaptic remodeling and altering pain circuits, or indirectly contribute to neuroplasticity through property changes, including the secretion of growth factors. We herein highlight the mechanisms underlying neuroplasticity that occur in the somatosensory circuit of the spinal dorsal horn, thalamus, and cortex associated with chronic pain following injury to the peripheral nervous system (PNS) or CNS. We also discuss the dynamic functions of microglia in shaping neuroplasticity related to chronic pain. We suggest further understanding of post-injury ectopic plasticity in the somatosensory circuits may shed light on the differential mechanisms underlying nociceptive, neuropathic, and nociplastic-type pain. While one of the prominent roles played by microglia appears to be the modulation of post-injury neuroplasticity. Therefore, future molecular- or genetics-based studies that address microglia-mediated post-injury neuroplasticity may contribute to the development of novel therapies for chronic pain.
神经病理性疼痛通常是慢性的,可在明显的组织损伤愈合后持续存在,这表明其潜在机制涉及神经元功能的改变。这种改变可能是神经损伤的直接后果,或是继发于组织或神经元损伤的神经可塑性的结果。最近的研究表明,神经可塑性与神经损伤后引发神经病理性疼痛有关,这种疼痛可能发生在损伤部位附近或远处。此外,研究还揭示,与慢性疼痛相关的神经可塑性受小胶质细胞调节,小胶质细胞是中枢神经系统(CNS)的常驻免疫细胞。小胶质细胞可能直接促成突触重塑和改变疼痛回路,或通过特性变化(包括生长因子的分泌)间接促成神经可塑性。我们在此强调,在周围神经系统(PNS)或中枢神经系统损伤后与慢性疼痛相关的脊髓背角、丘脑和皮质的体感回路中发生的神经可塑性的潜在机制。我们还讨论了小胶质细胞在塑造与慢性疼痛相关的神经可塑性方面的动态功能。我们认为,进一步了解体感回路中损伤后的异位可塑性可能有助于揭示伤害性疼痛、神经病理性疼痛和神经源性疼痛类型的潜在差异机制。虽然小胶质细胞发挥的一个突出作用似乎是调节损伤后的神经可塑性。因此,未来针对小胶质细胞介导的损伤后神经可塑性的分子或遗传学研究可能有助于开发慢性疼痛的新疗法。