Njoku Prince Obinna, Edokpayi Joshua Nosa
Faculty of Science, Engineering and Agriculture, Department of Geography and Environmental Sciences, University of Venda, Thohoyandou, South Africa.
J Air Waste Manag Assoc. 2023 Jan;73(1):1-14. doi: 10.1080/10962247.2022.2072976. Epub 2022 Jun 21.
Landfill gas composition comprises mainly of methane and carbon dioxide emissions and other Nonmethane Organic Carbons (NMOCs). Methane gas has a global warming potential that is estimated to be 25-36 over 100 years. Interestingly, methane generated from landfills is a renewable source of energy that has been used over the years as a source of electricity generation especially in developed and in some developing countries. However, methane from landfills has been underutilized in South Africa. Due to the recent unreliable electricity disruptions (load shedding) in South Africa, which is caused by a variety of factors. Prioritizing methane produced from landfills for use as a fuel for electricity generation is critical. This will assist to minimize the over-reliance on coal and, reduce the ongoing landfill gas generation. Therefore, the purpose of this study is to estimate the amount of methane emitted from Weltervenden landfill site using the LandGEM version 3.02 and Afvalzorg models and to evaluate the potential utilization of the gases emitted. The study was also aimed at determining the cost and benefits related to the implementation of a landfill gas utilization technology. The findings of this study show that methane emissions from the landfill will peak in the year 2023 with values of 4613 Mg/year and 3128 Mg/year for LandGem and Afvalzorg models, respectively. Also, the total methane emissions from the year 1999 to 2050, are 111,799.25 Mg/year and 27,898.93 Mg/year for both LandGEM and Afvalzorg models, respectively. The LFGcost web model simulations showed that the implementation of a LFG utilization project using Microturbine and CHP microturbine engines are economically feasible. This is considering the sales of electricity to the people. However, considering the sales of electricity generated and Certified Emission Reductions (CER) (carbon credits) to the global market all engines used in this study will be economically feasible. The methane emitted from the Polokwane landfill estimated from LandGEM and Afvalzorg models will peak in year 2023 at 4613 Mg/year and 3128 Mg/year, respectively. Also, the total methane emissions from the year 1999 to 2050, are 111,799.25 Mg/year and 27,898.93 Mg/year for both LandGEM and Afvalzorg models, respectively. The LFGcost web model simulations showed that the implementation of a LFG utilization project using Microturbine and CHP microturbine engines are economically feasible. This is considering the sales of electricity to the people. Therefore, implementation of LFG utilization is economically feasible from sales of electricity generated and Certified Emission Reductions.
垃圾填埋气的成分主要包括甲烷和二氧化碳排放物以及其他非甲烷有机碳(NMOCs)。甲烷气体具有全球变暖潜能值,据估计在100年的时间里为25 - 36。有趣的是,垃圾填埋场产生的甲烷是一种可再生能源,多年来一直被用作发电的能源,特别是在发达国家和一些发展中国家。然而,南非的垃圾填埋场产生的甲烷一直未得到充分利用。由于南非近期因各种因素导致电力供应不可靠(拉闸限电),将垃圾填埋场产生的甲烷优先用作发电燃料至关重要。这将有助于减少对煤炭的过度依赖,并减少持续产生的垃圾填埋气。因此,本研究的目的是使用LandGEM 3.02版和Afvalzorg模型估算韦尔特维登垃圾填埋场的甲烷排放量,并评估所排放气体的潜在利用价值。该研究还旨在确定与实施垃圾填埋气利用技术相关的成本和效益。本研究结果表明,垃圾填埋场的甲烷排放量将在2023年达到峰值,LandGem模型和Afvalzorg模型的排放量分别为每年4613公吨和每年3128公吨。此外,1999年至2050年期间,LandGEM模型和Afvalzorg模型的甲烷总排放量分别为每年111,799.25公吨和每年27,898.93公吨。LFGcost网络模型模拟表明,使用微型涡轮机和热电联产微型涡轮机发动机实施垃圾填埋气利用项目在经济上是可行的。这是考虑到向民众销售电力的情况。然而,考虑到向全球市场销售所产生的电力和核证减排量(CER)(碳信用额),本研究中使用的所有发动机在经济上都是可行的。根据LandGEM模型和Afvalzorg模型估算,波洛夸内垃圾填埋场排放的甲烷将在2023年达到峰值,分别为每年4613公吨和每年3128公吨。此外,1999年至2050年期间,LandGEM模型和Afvalzorg模型的甲烷总排放量分别为每年111,799.25公吨和每年27,898.93公吨。LFGcost网络模型模拟表明,使用微型涡轮机和热电联产微型涡轮机发动机实施垃圾填埋气利用项目在经济上是可行的。这是考虑到向民众销售电力的情况。因此,从所产生电力的销售和核证减排量来看,实施垃圾填埋气利用在经济上是可行的。