Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; Department of Neurobiology, Poznan University of Physical Education, 61-871 Poznan, Poland.
Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
Exp Neurol. 2022 Aug;354:114098. doi: 10.1016/j.expneurol.2022.114098. Epub 2022 Apr 30.
Chondroitin sulfate proteoglycans (CSPGs) consist of core proteins and glycosaminoglycan side chains. Tenascins, and hyaluronan and proteoglycan link protein 1 (HAPLN), link CSPGs with a hyaluronan backbone to constitute perineuronal nets (PNNs), which ensheath preferentially highly active neurons to maintain architecture and stabilize synapses, but restrict repair plasticity. Spinal cord injury increases CSPG core protein levels in the lesion proximity, limiting permissiveness of the extracellular milieu for fiber regrowth, however regulation of PNNs structure in the vicinity of distant α-motoneurons (MNs) in the course of degeneration and reorganization of their inputs requires research. Here, we examined early and late changes in CSPGs, HAPLN1, tenascin-R, and glial activation along the spinal cord in male rats with complete spinal cord transection (Th10), and their impact on PNNs ensheathing lumbar MNs innervating ankle extensor and flexor muscles, which are in different loading states in paraplegic rats. We show that (1) distance from the lesion site and time after injury (2-5 weeks) differentiate degree of changes in transcription rates (measured with RT-qPCR) of PNNs proteins with increased CSPGs and decreased HAPLN1 transcripts, suggesting long-term PNN destabilization in majority of spinal segments, (2) in lumbar segments PNN composition is not MN-class (extensor vs flexor) specific, both showing early decrease and late upregulation of Wisteria floribunda agglutinin (WFA) labeling in vicinity of synaptic boutons on MNs, (3) long-term locomotor training tends to reduce WFA(+) PNNs, but not their protein components (immunofluorescence measurements) around MNs. Our results suggest that training-induced regulation may target glycan structures of CSPGs.
硫酸软骨素蛋白聚糖 (CSPGs) 由核心蛋白和糖胺聚糖侧链组成。Tenascins、透明质酸和蛋白聚糖连接蛋白 1 (HAPLN) 将 CSPGs 与透明质酸主干连接起来,构成神经周围网 (PNNs),优先包绕高度活跃的神经元,维持其结构并稳定突触,但限制修复可塑性。脊髓损伤会增加损伤附近 CSPG 核心蛋白的水平,限制纤维再生的细胞外环境的通透性,但在退化和输入重组过程中,远α运动神经元 (MNs) 附近的 PNNs 结构的调节需要进一步研究。在这里,我们研究了雄性大鼠完全性脊髓横断 (Th10) 后脊髓内 CSPGs、HAPLN1、Tenascin-R 和神经胶质激活的早期和晚期变化,以及它们对包绕支配踝关节伸肌和屈肌的腰 MNs 的 PNNs 的影响,这些 MNs 在截瘫大鼠中处于不同的负荷状态。我们发现:(1) 损伤部位的距离和损伤后时间 (2-5 周) 区分了 PNNs 蛋白转录率 (通过 RT-qPCR 测量) 的变化程度,表现为 CSPGs 增加和 HAPLN1 转录物减少,提示大多数脊髓节段的 PNNs 长期不稳定;(2) 在腰段,PNN 的组成与 MN 类 (伸肌与屈肌) 无关,两者均表现出突触末梢附近 Wisteria floribunda agglutinin (WFA) 标记的早期减少和晚期上调;(3) 长期运动训练倾向于减少 MN 周围 WFA(+) PNNs,但不减少其蛋白成分 (免疫荧光测量)。我们的结果表明,训练诱导的调节可能靶向 CSPGs 的糖基结构。