Suppr超能文献

自动化可解释的异质治疗效果发现:COVID-19 案例研究。

Automated interpretable discovery of heterogeneous treatment effectiveness: A COVID-19 case study.

机构信息

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge 02139, MA, USA.

Departments of Anesthesiology, Perioperative Care and Pain Medicine, Neurology, Surgery and Medicine, NYU Langone Health, 560 1st Avenue, New York 10016, NY, USA.

出版信息

J Biomed Inform. 2022 Jun;130:104086. doi: 10.1016/j.jbi.2022.104086. Epub 2022 Apr 30.

Abstract

Testing multiple treatments for heterogeneous (varying) effectiveness with respect to many underlying risk factors requires many pairwise tests; we would like to instead automatically discover and visualize patient archetypes and predictors of treatment effectiveness using multitask machine learning. In this paper, we present a method to estimate these heterogeneous treatment effects with an interpretable hierarchical framework that uses additive models to visualize expected treatment benefits as a function of patient factors (identifying personalized treatment benefits) and concurrent treatments (identifying combinatorial treatment benefits). This method achieves state-of-the-art predictive power for COVID-19 in-hospital mortality and interpretable identification of heterogeneous treatment benefits. We first validate this method on the large public MIMIC-IV dataset of ICU patients to test recovery of heterogeneous treatment effects. Next we apply this method to a proprietary dataset of over 3000 patients hospitalized for COVID-19, and find evidence of heterogeneous treatment effectiveness predicted largely by indicators of inflammation and thrombosis risk: patients with few indicators of thrombosis risk benefit most from treatments against inflammation, while patients with few indicators of inflammation risk benefit most from treatments against thrombosis. This approach provides an automated methodology to discover heterogeneous and individualized effectiveness of treatments.

摘要

针对许多潜在风险因素,对不同疗效的多种治疗方法进行测试需要进行许多两两比较;我们希望使用多任务机器学习自动发现和可视化患者类型和治疗效果的预测因素。在本文中,我们提出了一种方法,使用可解释的层次框架来估计这些异质治疗效果,该框架使用加法模型将治疗效果的预期作为患者因素(确定个性化治疗效果)和同时治疗(确定组合治疗效果)的函数进行可视化。该方法在 COVID-19 住院死亡率的预测方面达到了最新水平,并对异质治疗效果进行了可解释的识别。我们首先在 ICU 患者的大型公共 MIMIC-IV 数据集上验证了该方法,以测试异质治疗效果的恢复情况。接下来,我们将该方法应用于一个拥有 3000 多名 COVID-19 住院患者的专有数据集,发现了预测异质治疗效果的主要是炎症和血栓风险指标的证据:血栓风险指标较少的患者从抗炎治疗中获益最多,而炎症风险指标较少的患者从抗血栓治疗中获益最多。这种方法提供了一种自动发现治疗效果的异质和个体化的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47af/9055753/f03753cc2ab5/ga1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验