Liu Yancong, Kang Xin, Xu Yiqian, Li Yaorui, Wang Shuang, Wang Chunyan, Hu Weiquan, Wang Ruihong, Liu Jiancong
Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
College of Nuclear Science and Technology, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China.
ACS Appl Mater Interfaces. 2022 May 18;14(19):22363-22371. doi: 10.1021/acsami.2c01804. Epub 2022 May 4.
Organic afterglow materials based on carbon dots (CDs) have aroused extensive attention for their potential applications in sensing, photoelectric devices, and anticounterfeiting. Effective methods to control the CD structure and modulate the energy levels are critical but still challenging. Here, we demonstrate a method to modulate the afterglow emission of CDs@SiO composites by controlling the carbonization degree of CDs with variable calcining temperatures. The CDs@SiO-Raw prepared with a hydrothermal bottom-up synthesis method shows a more polymerized structure of CDs with low carbonization degree, which emits long-lived thermally activated delayed fluorescence (TADF) with the lifetime of 252 ms. After calcination at 550 °C, CDs@SiO-550 exhibits a larger conjugated π-domain structure with higher carbonization degree, thus inducing room-temperature phosphorescence (RTP) emission with a lifetime of 451 ms. The transformation of the carbonization degree of CD structures leads to changes in energy levels and Δ, which affect their afterglow luminescence behaviors. This work proposes a new concept to modulate the afterglow emission of CDs@SiO composites and forecasts potential applications of CD-based afterglow materials.
基于碳点(CDs)的有机余辉材料因其在传感、光电器件和防伪等方面的潜在应用而受到广泛关注。控制CD结构和调节能级的有效方法至关重要,但仍具有挑战性。在此,我们展示了一种通过在不同煅烧温度下控制CDs的碳化程度来调节CDs@SiO复合材料余辉发射的方法。采用水热自下而上合成法制备的CDs@SiO-Raw显示出碳化程度低的CDs具有更聚合的结构,其发射寿命为252 ms的长寿命热激活延迟荧光(TADF)。在550℃煅烧后,CDs@SiO-550呈现出具有更高碳化程度的更大共轭π域结构,从而诱导出寿命为451 ms的室温磷光(RTP)发射。CD结构碳化程度的转变导致能级和Δ的变化,这影响了它们的余辉发光行为。这项工作提出了一种调节CDs@SiO复合材料余辉发射的新概念,并预测了基于CD的余辉材料的潜在应用。