Suppr超能文献

通过网络嵌入探索时间社区结构

Exploring Temporal Community Structure via Network Embedding.

作者信息

Li Tianpeng, Wang Wenjun, Jiao Pengfei, Wang Yinghui, Ding Ruomeng, Wu Huaming, Pan Lin, Jin Di

出版信息

IEEE Trans Cybern. 2023 Nov;53(11):7021-7033. doi: 10.1109/TCYB.2022.3168343. Epub 2023 Oct 17.

Abstract

Temporal community detection is helpful to discover and analyze significant groups or clusters hidden in dynamic networks in the real world. A variety of methods, such as modularity optimization, spectral method, and statistical network model, has been developed from diversified perspectives. Recently, network embedding-based technologies have made significant progress, and one can exploit deep learning superiority to network tasks. Although some methods for static networks have shown promising results in boosting community detection by integrating community embedding, they are not suitable for temporal networks and unable to capture their dynamics. Furthermore, the dynamic embedding methods only model network varying without considering community structures. Hence, in this article, we propose a novel unsupervised dynamic community detection model, which is based on network embedding and can effectively discover temporal communities and model dynamic networks. More specifically, we propose the community prior by introducing the Gaussian mixture model (GMM) in the variational autoencoder, which can obtain community information and better model the evolutionary characteristics of community structure and node embedding by utilizing the variant of gated recurrent unit (GRU). Extensive experiments conducted in real-world and artificial networks demonstrate that our proposed model has a better effect on improving the accuracy of dynamic community detection.

摘要

时间社区检测有助于发现和分析现实世界中动态网络中隐藏的重要群组或簇。从不同角度开发了多种方法,如模块化优化、谱方法和统计网络模型。最近,基于网络嵌入的技术取得了显著进展,人们可以利用深度学习在网络任务方面的优势。虽然一些用于静态网络的方法通过集成社区嵌入在促进社区检测方面显示出有希望的结果,但它们不适用于时间网络,无法捕捉其动态性。此外,动态嵌入方法仅对网络变化进行建模,而不考虑社区结构。因此,在本文中,我们提出了一种新颖的无监督动态社区检测模型,该模型基于网络嵌入,能够有效地发现时间社区并对动态网络进行建模。更具体地说,我们通过在变分自编码器中引入高斯混合模型(GMM)来提出社区先验,利用门控循环单元(GRU)的变体可以获得社区信息并更好地对社区结构和节点嵌入的演化特征进行建模。在真实世界和人工网络中进行的大量实验表明,我们提出的模型在提高动态社区检测的准确性方面有更好的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验