Pan Yu, Liu Xin, Yao Feng, Zhang Lei, Li Wei, Wang Pei
College of Systems Engineering, National University of Defense Technology, Changsha, 410000, China.
College of Command and Control Engineering, Army Engineering University, Nanjing, 310000, China.
Sci Rep. 2024 Oct 10;14(1):23741. doi: 10.1038/s41598-024-74361-0.
Community detection is a critical component of network analysis and a hot topic in social computing. Detecting community structure in dynamic networks has important theoretical and practical implications for understanding the intrinsic function of networks and predicting network behavior. However, the majority of existing dynamic community detection methods adopt shallow models, which have limited ability to excavate complex non-linear structures and tend to generate undesirable community structures. In order to obtain an accurate and robust community structure in dynamic networks, we are inspired by network representation learning and utilize the deep learning to detect evolving communities in dynamic networks. In this paper, we propose a novel dynamic community detection method by fusing Deep Learning and Evolutionary Clustering (DLEC). This work attempts to combine deep learning and evolutionary clustering into a unified framework. First, we propose a matrix construction strategy to fully reveal the inherent community structures via the underlying community memberships. Then, we develop a novel multi-layer deep autoencoder framework that consists of multiple non-linear functions to extract the latent deep representation of the dynamic network. Based on the evolutionary clustering framework, a graph regularization term is introduced to ensure the smoothness of the community evolution. Finally, we employ the K-means clustering algorithm on the low-dimensional network space to obtain the community structure. Extensive experimental results on synthetic and real-world networks show that the proposed DLEC algorithm can effectively detect high-quality communities in dynamic networks.
社区检测是网络分析的关键组成部分,也是社会计算中的一个热门话题。在动态网络中检测社区结构对于理解网络的内在功能和预测网络行为具有重要的理论和实际意义。然而,现有的大多数动态社区检测方法采用浅层模型,这些模型挖掘复杂非线性结构的能力有限,并且容易产生不理想的社区结构。为了在动态网络中获得准确且稳健的社区结构,我们受到网络表示学习的启发,利用深度学习来检测动态网络中不断演变的社区。在本文中,我们提出了一种融合深度学习和进化聚类(DLEC)的新型动态社区检测方法。这项工作试图将深度学习和进化聚类整合到一个统一的框架中。首先,我们提出一种矩阵构建策略,通过潜在的社区成员关系来充分揭示内在的社区结构。然后,我们开发了一种新颖的多层深度自动编码器框架,该框架由多个非线性函数组成,用于提取动态网络的潜在深度表示。基于进化聚类框架,引入一个图正则化项以确保社区演化的平滑性。最后,我们在低维网络空间上使用K均值聚类算法来获得社区结构。在合成网络和真实世界网络上的大量实验结果表明,所提出的DLEC算法能够有效地检测动态网络中的高质量社区。