Suppr超能文献

理解纳米接触的流变学。

Understanding the rheology of nanocontacts.

作者信息

Khosravi Ali, Lainé Antoine, Vanossi Andrea, Wang Jin, Siria Alessandro, Tosatti Erio

机构信息

International School for Advanced Studies (SISSA), I-34136, Trieste, Italy.

International Centre for Theoretical Physics, I-34151, Trieste, Italy.

出版信息

Nat Commun. 2022 May 4;13(1):2428. doi: 10.1038/s41467-022-30096-y.

Abstract

Mechanical stiffness, as opposed to softness, is a fundamental property of solids. Its persistence or rheological evolution in vibrating solid-solid nanocontacts is important in physics, materials science and technology. A puzzling apparent liquefaction under oscillatory strain, totally unexpected at room temperature, was suggested by recent experiments on solid gold nano-junctions. Here we show theoretically that realistically simulated nanocontacts actually remain crystalline even under large oscillatory strains. Tensile and compressive slips, respectively of "necking" and "bellying" types, do take place, but recover reversibly even during fast oscillatory cycles. We also show that, counterintuitively, the residual stress remains tensile after both slips, driving the averaged stiffness from positive to negative, thus superficially mimicking a liquid's. Unlike a liquid, however, rheological softening occurs by stick-slip, predicting largely frequency independent stiffness with violent noise in stress and conductance, properties compatible with experiments. The baffling large amplitude rheology of gold nanocontacts and its consequences should apply, with different parameters, to many other metals.

摘要

与柔软性相反,机械刚度是固体的一种基本属性。其在振动的固体 - 固体纳米接触中的持久性或流变学演变在物理学、材料科学和技术领域具有重要意义。近期关于固体金纳米结的实验表明,在振荡应变下出现了令人困惑的明显液化现象,这在室温下完全出乎意料。在此,我们从理论上表明,实际模拟的纳米接触即使在大的振荡应变下实际上仍保持晶体状态。分别发生了“颈缩”型和“鼓胀”型的拉伸和压缩滑移,但即使在快速振荡周期中也会可逆恢复。我们还表明,与直觉相反,两次滑移后残余应力仍为拉伸状态,使得平均刚度从正值变为负值,从而在表面上模拟了液体的情况。然而,与液体不同的是,流变软化通过粘滑发生,预测出刚度在很大程度上与频率无关,同时应力和电导率存在剧烈噪声,这些特性与实验相符。金纳米接触令人困惑的大振幅流变学及其后果,在参数不同的情况下,应适用于许多其他金属。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验