Suppr超能文献

三维流形的柄体分解与多连续模式

Handlebody decompositions of three-manifolds and polycontinuous patterns.

作者信息

Sakata N, Mishina R, Ogawa M, Ishihara K, Koda Y, Ozawa M, Shimokawa K

机构信息

Department of Mathematics, Saitama University, Saitama 338-8570, Japan.

Faculty of Education, Yamaguchi University, Yamaguchi 753-8511, Japan.

出版信息

Proc Math Phys Eng Sci. 2022 Apr;478(2260):20220073. doi: 10.1098/rspa.2022.0073. Epub 2022 Apr 20.

Abstract

We introduce the concept of a handlebody decomposition of a three-manifold, a generalization of a Heegaard splitting, or a trisection. We show that two handlebody decompositions of a closed orientable three-manifold are stably equivalent. As an application to materials science, we consider a mathematical model of polycontinuous patterns and discuss a topological study of microphase separation of a block copolymer melt.

摘要

我们引入三维流形的柄体分解概念,它是希盖尔分裂或三分法的一种推广。我们证明了闭可定向三维流形的两个柄体分解是稳定等价的。作为对材料科学的应用,我们考虑多连续模式的数学模型,并讨论嵌段共聚物熔体微相分离的拓扑研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验