Sun Nai-Hsiang, Tsai Min-Yu, Liau Jiun-Jie, Chiang Jung-Sheng
Department of Electrical Engineering, 54791I-Shou University, Kaohsiung, Taiwan.
Photonicore Technologies Co., Ltd., 54791Taipei, Taiwan.
Sci Prog. 2021 Jul;104(3_suppl):368504221094173. doi: 10.1177/00368504221094173.
In this paper, a new apodized fiber Bragg grating (FBG) structure, the Chebyshev apodization, is proposed. The Chebyshev polynomial distribution has been widely used for the optimal design of antennas and filters, but it has not been used for designing FBGs. Unlike the function of traditional Gaussian-apodized FBGs, the Chebyshev polynomial is a discrete function. We demonstrate a new methodology for designing Chebyshev-apodized FBGs: the grating region is divided by discrete n sections with uniform gratings, while the index change is used to express the Chebyshev polynomial. We analyze the Chebyshev-apodized FBGs by using coupled mode theory and the piecewise-uniform approach. The reflection spectrum and the dispersion of Chebyshev-apodized FBGs are calculated and compared with those of Gaussian FBGs. Moreover, a sidelobe suppression level (SSL), a parameter of the Chebyshev polynomial, along with the maximum ac-index change of FBGs are analyzed. Assume that the grating length is 20mm, SSL is 100 dB, the section number is 40, and the maximum ac-index change is 2 × 10-4. The reflection spectrum of Chebyshev apodized FBGs shows flattened sidelobes with an absolute SSL of -95.9 dB (corresponding to SSL=100 dB). The simulation results reveal that at the same full width at half maximum, the Chebyshev FBGs have lower sidelobe suppression than the Gaussian FBGs, but their dispersion is similar. We demonstrate the potential of using Chebyshev-apodized FBGs in optical filters, dispersion compensators, and sensors; Chebyshev apodization can be applied in the design of periodic dielectric waveguides.
本文提出了一种新型变迹光纤布拉格光栅(FBG)结构——切比雪夫变迹。切比雪夫多项式分布已广泛应用于天线和滤波器的优化设计,但尚未用于设计光纤布拉格光栅。与传统高斯变迹光纤布拉格光栅的函数不同,切比雪夫多项式是一个离散函数。我们展示了一种设计切比雪夫变迹光纤布拉格光栅的新方法:光栅区域被划分为具有均匀光栅的离散n个部分,而折射率变化用于表示切比雪夫多项式。我们使用耦合模理论和分段均匀方法对切比雪夫变迹光纤布拉格光栅进行分析。计算了切比雪夫变迹光纤布拉格光栅的反射光谱和色散,并与高斯光纤布拉格光栅的进行了比较。此外,还分析了切比雪夫多项式的一个参数——旁瓣抑制水平(SSL)以及光纤布拉格光栅的最大交流折射率变化。假设光栅长度为20mm,SSL为100dB,段数为40,最大交流折射率变化为2×10⁻⁴。切比雪夫变迹光纤布拉格光栅的反射光谱显示出旁瓣平坦化,绝对SSL为 -95.9dB(对应于SSL = 100dB)。仿真结果表明,在相同的半高全宽下,切比雪夫光纤布拉格光栅的旁瓣抑制比高斯光纤布拉格光栅低,但其色散相似。我们展示了在光学滤波器、色散补偿器和传感器中使用切比雪夫变迹光纤布拉格光栅的潜力;切比雪夫变迹可应用于周期性介质波导的设计。