Suppr超能文献

独立 Brassica 异源六倍体谱系之间的 F 杂种的等位基因分离分析。

Allele segregation analysis of F hybrids between independent Brassica allohexaploid lineages.

机构信息

Plant Breeding Department, University of Bonn, 53115, Bonn, Germany.

Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany.

出版信息

Chromosoma. 2022 Sep;131(3):147-161. doi: 10.1007/s00412-022-00774-3. Epub 2022 May 5.

Abstract

In the Brassica genus, we find both diploid species (one genome) and allotetraploid species (two different genomes) but no naturally occurring hexaploid species (three different genomes, AABBCC). Although hexaploids can be produced via human intervention, these neo-polyploids have quite unstable genomes and usually suffer from severe genome reshuffling. Whether these genome rearrangements continue in later generations and whether genomic arrangements follow similar, reproducible patterns between different lineages is still unknown. We crossed Brassica hexaploids resulting from different species combinations to produce five F hybrids and analyzed the karyotypes of the parents and the F hybrids, as well as allele segregation in a resulting test-cross population via molecular karyotyping using SNP array genotyping. Although some genomic regions were found to be more likely to be duplicated, deleted, or rearranged, a consensus pattern was not shared between genotypes. Brassica hexaploids had a high tolerance for fixed structural rearrangements, but which rearrangements occur and become fixed over many generations does not seem to show either strong reproducibility or to indicate selection for stability. On average, we observed 10 de novo chromosome rearrangements contributed almost equally from both parents to the F hybrids. At the same time, the F hybrid meiosis produced on average 8.6 new rearrangements. Hence, the increased heterozygosity in the F hybrid did not significantly improve genome stability in our hexaploid hybrids and might have had the opposite effect. However, hybridization between lineages was readily achieved and may be exploited for future genetics and breeding purposes.

摘要

在芸薹属中,我们发现了二倍体物种(一个基因组)和异源四倍体物种(两个不同的基因组),但没有天然存在的六倍体物种(三个不同的基因组,AABBCC)。虽然六倍体可以通过人为干预产生,但这些新的多倍体具有非常不稳定的基因组,通常会遭受严重的基因组重排。这些基因组重排是否会在后代中继续发生,以及不同谱系之间的基因组排列是否遵循相似的、可重复的模式,目前尚不清楚。我们将来自不同物种组合的芸薹属六倍体进行杂交,产生了五个 F1 杂种,并通过 SNP 芯片基因分型的分子核型分析,分析了亲本和 F1 杂种的核型以及在一个衍生的测交群体中的等位基因分离。虽然发现一些基因组区域更容易发生重复、缺失或重排,但不同基因型之间没有共享一致的模式。芸薹属六倍体对固定结构重排具有很高的耐受性,但哪些重排会发生并在许多代中固定下来,似乎既没有表现出很强的重现性,也没有表现出对稳定性的选择。平均而言,我们观察到 10 个从头发生的染色体重排在 F1 杂种中几乎平等地来自双亲。与此同时,F1 杂种减数分裂平均产生 8.6 个新的重排。因此,F1 杂种中增加的杂合性并没有显著提高我们的六倍体杂种的基因组稳定性,甚至可能产生了相反的效果。然而,谱系之间的杂交很容易实现,并且可能被用于未来的遗传学和育种目的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55e/9470611/9c8f4916e580/412_2022_774_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验