Department of Endocrinology and metabolism, Peking University International Hospital, No. 1 Life Garden Road Zhongguancun Life Science Garden Changping District, Beijing, 102206, China.
BMC Pregnancy Childbirth. 2022 May 5;22(1):392. doi: 10.1186/s12884-022-04706-y.
Macrosomia is closely associated with poor maternal and fetal outcome. But there is short of studies on the risk of macrosomia in early pregnancy. The purpose of this study is to establish a nomogram for predicting macrosomia in the first trimester.
A case-control study involving 1549 pregnant women was performed. According to the birth weight of newborn, the subjects were divided into macrosomia group and non-macrosomia group. The risk factors for macrosomia in early pregnancy were analyzed by multivariate logistic regression. A nomogram was used to predict the risk of macrosomia.
The prevalence of macrosomia was 6.13% (95/1549) in our hospital. Multivariate logistic regression analysis showed that prepregnancy overweight (OR: 2.13 95% CI: 1.18-3.83)/obesity (OR: 3.54, 95% CI: 1.56-8.04), multiparity (OR:1.88, 95% CI: 1.16-3.04), the history of macrosomia (OR: 36.97, 95% CI: 19.90-68.67), the history of GDM/DM (OR: 2.29, 95% CI: 1.31-3.98), the high levels of HbA1c (OR: 1.76, 95% CI: 1.00-3.10) and TC (OR: 1.36, 95% CI: 1.00-1.84) in the first trimester were the risk factors of macrosomia. The area under ROC (the receiver operating characteristic) curve of the nomogram model was 0.807 (95% CI: 0.755-0.859). The sensitivity and specificity of the model were 0.716 and 0.777, respectively.
The nomogram model provides an effective mothed for clinicians to predict macrosomia in the first trimester.
巨大儿与母婴不良结局密切相关。但目前缺乏关于早期妊娠巨大儿风险的研究。本研究旨在建立预测早孕期巨大儿的列线图。
本病例对照研究纳入了 1549 名孕妇。根据新生儿出生体重,将研究对象分为巨大儿组和非巨大儿组。采用多因素 logistic 回归分析早孕期巨大儿的危险因素。采用列线图预测巨大儿的风险。
我院巨大儿的患病率为 6.13%(95/1549)。多因素 logistic 回归分析显示,孕前超重/肥胖(OR:2.13,95%CI:1.18-3.83)/肥胖(OR:3.54,95%CI:1.56-8.04)、多胎妊娠(OR:1.88,95%CI:1.16-3.04)、巨大儿史(OR:36.97,95%CI:19.90-68.67)、GDM/DM 史(OR:2.29,95%CI:1.31-3.98)、孕早期 HbA1c 水平较高(OR:1.76,95%CI:1.00-3.10)和 TC 水平较高(OR:1.36,95%CI:1.00-1.84)是巨大儿的危险因素。列线图模型的 ROC 曲线下面积为 0.807(95%CI:0.755-0.859)。模型的灵敏度和特异度分别为 0.716 和 0.777。
列线图模型为临床医生预测早孕期巨大儿提供了一种有效的方法。