Suppr超能文献

构建和验证老年转移性非小细胞肺癌患者的预后列线图。

Construction and validation of prognostic nomograms for elderly patients with metastatic non-small cell lung cancer.

机构信息

Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.

Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases, Beijing, China.

出版信息

Clin Respir J. 2022 May;16(5):380-393. doi: 10.1111/crj.13491. Epub 2022 May 5.

Abstract

BACKGROUND

Metastatic non-small cell lung cancer (NSCLC) is mostly seen in older patients and is associated with poor prognosis. There is no reliable method to predict the prognosis of elderly patients (≥60 years old) with metastatic NSCLC. The aim of our study was to develop and validate nomograms which accurately predict survival in this group of patients.

METHODS

NSCLC patients diagnosed between 2010 and 2015 were all identified from the Surveillance, Epidemiology, and End Results (SEER) database. Nomograms were constructed by significant clinicopathological variables (p < 0.05) selected in multivariate Cox analysis regression.

RESULTS

A total of 9584 patients met the inclusion criteria and were randomly allocated in the training (n = 6712) and validation (n = 2872) cohorts. In training cohort, independent prognostic factors included age, gender, race, grade, tumor site, pathology, T stage, N stage, radiotherapy, surgery, chemotherapy, and metastatic site (p < 0.05) for lung cancer-specific survival (LCSS) and overall survival (OS) were identified by the Cox regression. Nomograms for predicting 1-, 2-, and 3-years LCSS and OS were established and showed excellent predictive performance with a higher C-index than that of the 7th TNM staging system (LCSS: training cohort: 0.712 vs. 0.534; p < 0.001; validation cohort: 0.707 vs. 0.528; p < 0.001; OS: training cohort: 0.713 vs. 0.531; p < 0.001; validation cohort: 0.710 vs. 0.528; p < 0.001). The calibration plots showed good consistency from the predicted to actual survival probabilities both in training cohort and validation cohort. Moreover, the decision curve analysis (DCA) achieved better net clinical benefit compared with TNM staging models.

CONCLUSIONS

We established and validated novel nomograms for predicting LCSS and OS in elderly patients with metastatic NSCLC with desirable discrimination and calibration ability. These nomograms could provide personalized risk assessment for these patients and assist in clinical decision.

摘要

背景

转移性非小细胞肺癌(NSCLC)多见于老年患者,预后较差。目前尚无可靠的方法来预测老年(≥60 岁)转移性 NSCLC 患者的预后。本研究旨在开发和验证适用于这组患者的列线图,以准确预测其生存率。

方法

从监测、流行病学和最终结果(SEER)数据库中确定 2010 年至 2015 年间诊断的 NSCLC 患者。通过多变量 Cox 分析回归选择有统计学意义的临床病理变量(p<0.05)构建列线图。

结果

共纳入 9584 例患者,随机分为训练队列(n=6712)和验证队列(n=2872)。在训练队列中,独立的预后因素包括年龄、性别、种族、分级、肿瘤部位、病理、T 分期、N 分期、放疗、手术、化疗和转移部位(p<0.05),可用于预测肺癌特异性生存率(LCSS)和总生存率(OS)。通过 Cox 回归,建立了预测 1、2、3 年 LCSS 和 OS 的列线图,其预测性能优于第 7 版 TNM 分期系统(LCSS:训练队列:0.712 比 0.534,p<0.001;验证队列:0.707 比 0.528,p<0.001;OS:训练队列:0.713 比 0.531,p<0.001;验证队列:0.710 比 0.528,p<0.001)。校准图显示,训练队列和验证队列的预测生存率与实际生存率之间具有良好的一致性。此外,决策曲线分析(DCA)与 TNM 分期模型相比,获得了更好的净临床获益。

结论

本研究建立并验证了用于预测老年转移性 NSCLC 患者 LCSS 和 OS 的新型列线图,具有良好的区分度和校准能力。这些列线图可以为这些患者提供个性化的风险评估,并有助于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edaa/9366578/1c11e2010627/CRJ-16-380-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验