Suppr超能文献

一种基于网络的矩阵分解框架,用于癌症基因组数据的ceRNA共模块识别。

A network-based matrix factorization framework for ceRNA co-modules recognition of cancer genomic data.

作者信息

Wang Yujie, Zhou Gang, Guan Tianhao, Wang Yan, Xuan Chenxu, Ding Tao, Gao Jie

机构信息

School of Science, Jiangnan University, Wuxi 214122, China.

School of Mathematics Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

出版信息

Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac154.

Abstract

With the development of high-throughput technologies, the accumulation of large amounts of multidimensional genomic data provides an excellent opportunity to study the multilevel biological regulatory relationships in cancer. Based on the hypothesis of competitive endogenous ribonucleic acid (RNA) (ceRNA) network, lncRNAs can eliminate the inhibition of microRNAs (miRNAs) on their target genes by binding to intracellular miRNA sites so as to improve the expression level of these target genes. However, previous studies on cancer expression mechanism are mostly based on individual or two-dimensional data, and lack of integration and analysis of various RNA-seq data, making it difficult to verify the complex biological relationships involved. To explore RNA expression patterns and potential molecular mechanisms of cancer, a network-regularized sparse orthogonal-regularized joint non-negative matrix factorization (NSOJNMF) algorithm is proposed, which combines the interaction relations among RNA-seq data in the way of network regularization and effectively prevents multicollinearity through sparse constraints and orthogonal regularization constraints to generate good modular sparse solutions. NSOJNMF algorithm is performed on the datasets of liver cancer and colon cancer, then ceRNA co-modules of them are recognized. The enrichment analysis of these modules shows that >90% of them are closely related to the occurrence and development of cancer. In addition, the ceRNA networks constructed by the ceRNA co-modules not only accurately mine the known correlations of the three RNA molecules but also further discover their potential biological associations, which may contribute to the exploration of the competitive relationships among multiple RNAs and the molecular mechanisms affecting tumor development.

摘要

随着高通量技术的发展,大量多维基因组数据的积累为研究癌症中的多层次生物调控关系提供了绝佳机会。基于竞争性内源性核糖核酸(RNA)(ceRNA)网络假说,长链非编码RNA(lncRNAs)可通过与细胞内微小RNA(miRNAs)位点结合,消除miRNAs对其靶基因的抑制作用,从而提高这些靶基因的表达水平。然而,以往关于癌症表达机制的研究大多基于个体或二维数据,缺乏对各种RNA测序数据的整合与分析,难以验证其中涉及的复杂生物学关系。为探索癌症的RNA表达模式及潜在分子机制,提出了一种网络正则化稀疏正交正则化联合非负矩阵分解(NSOJNMF)算法,该算法以网络正则化的方式结合RNA测序数据之间的相互作用关系,并通过稀疏约束和正交正则化约束有效防止多重共线性,以生成良好的模块化稀疏解。在肝癌和结肠癌数据集上执行NSOJNMF算法,进而识别出它们的ceRNA共模块。对这些模块的富集分析表明,其中超过90%与癌症的发生和发展密切相关。此外,由ceRNA共模块构建的ceRNA网络不仅能准确挖掘三种RNA分子的已知相关性,还能进一步发现它们潜在的生物学关联,这可能有助于探索多种RNA之间的竞争关系以及影响肿瘤发展的分子机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验