Xing Yang, Qiao Chengfang, Li Xinmin, Li Chun, Wang Honghao, Li Fayun, Di Ling, Yang Zhanxu
College of Chemistry, Chemical Engineering, and Environmental Engineering, Liaoning Shihua University Fushun 113001 China
College of Chemical Engineering and Modern Materials, Shangluo University Shangluo 726000 China.
RSC Adv. 2019 May 16;9(27):15370-15380. doi: 10.1039/c9ra02277e. eCollection 2019 May 14.
Three Ir(iii) complexes IrC1, IrC2, and IrC3 substituted with 4-(diphenylamino)phenyl (TPA), 4-(9-carbazol-9-yl)phenyl (Cz1), and 9-phenyl-9-carbazol-3-yl (Cz2) moieties were prepared and fully characterized as phosphorescent emitters. In comparison with Ir(ppy), introduction of TPA, Cz1, and Cz2 moieties strongly improved the oxygen sensitivities of IrC1-IrC3. Short-decayed IrC1 with / of 168.6 and of 202.2 bar in THF exhibited the highest sensitivity for oxygen. TPA and Cz moieties caused remarkable collision radius variations of the Ir(iii) complexes with 2.13 ± 0.08 for / , 1.24 ± 0.06 for / , and 1.54 ± 0.08 for / . For demonstrating the dependence of oxygen sensitivity on the molecular structure of the oxygen-sensitive probes (OSPs), the delocalization of spin populations (DSPs) has been applied for the first time to confirm the collision radius variations of Ir(iii) complexes. Remarkable DSPs were found on the TPA, Cz1, and Cz2 moieties with the spin population (percentage of the spin population) of 0.23210 (11.61%), 0.08862 (4.43%), and 0.13201 (6.60%), respectively. And strong linear correlations ( = 0.997) between the collision radius variations and spin population on TPA and Cz moieties were apparent. The DSPs could be used to describe the dependence of oxygen sensitivity on the molecular structure of the OSPs. For achieving real-time oxygen sensing, the photostability, oxygen sensing performance, and operational stability of IrC1-IrC3 and Ir(ppy) immobilized in ethyl cellulose (EC) were investigated. The IrC1-EC film demonstrated outstanding photostability after 60 min of irradiation and excellent operational stability for continuous oxygen monitoring with no attenuation of the original emission intensity in 4000 s. This study quantified and analyzed the dependence of oxygen sensitivity on the molecular structure of Ir(iii) complexes for the first time and illustrated a feasible approach to achieve high-efficiency sensors for real-time monitoring of oxygen.
制备了三种用4-(二苯胺基)苯基(TPA)、4-(9-咔唑-9-基)苯基(Cz1)和9-苯基-9-咔唑-3-基(Cz2)部分取代的Ir(iii)配合物IrC1、IrC2和IrC3,并对其作为磷光发射体进行了全面表征。与Ir(ppy)相比,引入TPA、Cz1和Cz2部分显著提高了IrC1-IrC3的氧敏感性。在四氢呋喃中,具有168.6的τ0/τ和202.2 bar的Ksv的短寿命IrC1对氧气表现出最高的敏感性。TPA和Cz部分导致Ir(iii)配合物的碰撞半径显著变化,τ0/τ为2.13±0.08,τ/τ0为1.24±0.06,Ksv为1.54±0.08。为了证明氧敏感性对氧敏感探针(OSP)分子结构的依赖性,首次应用自旋布居离域(DSP)来确认Ir(iii)配合物的碰撞半径变化。在TPA、Cz1和Cz2部分发现了显著的DSP,自旋布居(自旋布居百分比)分别为0.23210(11.61%)、0.08862(4.43%)和0.13201(6.60%)。TPA和Cz部分的碰撞半径变化与自旋布居之间存在很强的线性相关性(R=0.997)。DSP可用于描述氧敏感性对OSP分子结构的依赖性。为了实现实时氧传感,研究了固定在乙基纤维素(EC)中的IrC1-IrC3和Ir(ppy)的光稳定性、氧传感性能和操作稳定性。IrC1-EC薄膜在照射60分钟后表现出出色的光稳定性,并且在连续氧监测的4000 s内具有出色的操作稳定性,原始发射强度没有衰减。本研究首次量化并分析了氧敏感性对Ir(iii)配合物分子结构的依赖性,并说明了一种实现高效实时监测氧传感器的可行方法。