Taskesen Teoman, Pareek Devendra, Neerken Janet, Schoneberg Johannes, Hirwa Hippolyte, Nowak David, Parisi Jürgen, Gütay Levent
Laboratory for Chalcogenide-Photovoltaics (LCP), Energy and Semiconductor Research Laboratory (EHF), Institute of Physics, Carl von Ossietzky University of Oldenburg Carl-von-Ossietzky-Straße 9-11 D-26111 Oldenburg Germany
RSC Adv. 2019 Jul 3;9(36):20857-20864. doi: 10.1039/c9ra02779c. eCollection 2019 Jul 1.
For the fabrication of a kesterite-type CZTSe absorber material, stacked elemental-alloy layers (SEAL) precursor consisting of Cu-Sn alloy and elemental Zn layers offer the possibility of enhanced process control due to their advantages such as improvement of material homogeneity and suppression of the commonly observed Sn loss. In this study, the impact of selenium amounts during the annealing of a SEAL-type precursor with the configuration of Zn/Cu-Sn/Zn was demonstrated. The obtained results demonstrate how the selenium amount can indirectly be used to influence the absorber composition in the described annealing process and its direct impact on the opto-electronic properties of solar cells. This occurs due to the placement of elemental Sn in the vicinity of the sample during annealing that acts as a further source of SnSe vapor during the high-temperature stage of the process depending on the degree of selenium excess. The results show that higher selenium amount increases the band gap of kesterite; this is directly accompanied by a shift of the defect activation energies. Optimization of this effect can lead to widening of the space-charge width up to 400 nm, which improves the charge carrier collection. The described optimization strategy leads to device efficiencies above 11%.
对于制备铜锌锡硒(CZTSe)类硫系化合物吸收层材料而言,由铜锡合金和锌单质层组成的堆叠元素合金层(SEAL)前驱体,因其在提高材料均匀性以及抑制常见的锡损失等方面具有优势,为增强工艺控制提供了可能性。在本研究中,展示了在对具有Zn/Cu - Sn/Zn结构的SEAL型前驱体进行退火过程中,硒含量的影响。所得结果表明,在所述退火过程中,硒含量如何能够间接地用于影响吸收层的成分,以及其对太阳能电池光电性能的直接影响。这是由于在退火过程中,单质锡放置在样品附近,根据硒过量的程度,在该过程的高温阶段,它会作为硒化锡蒸汽的另一个来源。结果表明,较高的硒含量会增加硫系化合物的带隙;这直接伴随着缺陷激活能的偏移。对这种效应的优化可导致空间电荷宽度拓宽至400纳米,这改善了电荷载流子的收集。所描述的优化策略使器件效率超过11%。