Khalid Muhammad, Ali Akbar, Jawaria Rifat, Asghar Muhammad Adnan, Asim Sumreen, Khan Muhammad Usman, Hussain Riaz, Fayyaz Ur Rehman Muhammad, Ennis Christopher J, Akram Muhammad Safwan
Department of Chemistry, Khawaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
Department of Chemistry, University of Sargodha Sargodha 40100 Pakistan.
RSC Adv. 2020 Jun 10;10(37):22273-22283. doi: 10.1039/d0ra02857f. eCollection 2020 Jun 8.
Materials with nonlinear optical (NLO) properties have significant applications in different fields, including nuclear science, biophysics, medicine, chemical dynamics, solid physics, materials science and surface interface applications. Quinoline and carbazole, owing to their electron-deficient and electron-rich character respectively, play a role in charge transfer applications in optoelectronics. Therefore, an attempt has been made herein to explore quinoline-carbazole based novel materials with highly nonlinear optical properties. Structural tailoring has been made at the donor and acceptor units of two recently synthesized quinoline-carbazole molecules (Q1, Q2) and acceptor-donor-π-acceptor (A-D-π-A) and donor-acceptor-donor-π-acceptor (D-A-D-π-A) type novel molecules Q1D1-Q1D3 and Q2D2-Q2D3 have been quantum chemically designed, respectively. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) computations are performed to process the impact of acceptor and donor units on photophysical, electronic and NLO properties of selected molecules. The values (321 and 319 nm) for Q1 and Q2 in DSMO were in good agreement with the experimental values (326 and 323 nm). The largest shift in absorption maximum is displayed by Q1D2 (436 nm). The designed compounds (Q1D3-Q2D3) express absorption spectra with an increased border and with a reduced band gap compared to the parent compounds (Q1 and Q2). Natural bond orbital (NBO) investigations showed that the extended hyper conjugation and strong intramolecular interaction play significant roles in stabilising these systems. All molecules expressed significant NLO responses. A large value of was elevated in Q1D2 (23 885.90 a.u.). This theoretical framework reveals the NLO response properties of novel quinoline-carbazole derivatives that can be significant for their use in advanced applications.
具有非线性光学(NLO)特性的材料在不同领域有着重要应用,包括核科学、生物物理学、医学、化学动力学、固体物理学、材料科学以及表面界面应用。喹啉和咔唑分别因其缺电子和富电子特性,在光电子学的电荷转移应用中发挥作用。因此,本文尝试探索具有高度非线性光学特性的基于喹啉 - 咔唑的新型材料。对最近合成的两个喹啉 - 咔唑分子(Q1、Q2)的供体和受体单元进行了结构剪裁,分别量子化学设计了受体 - 供体 - π - 受体(A - D - π - A)型和供体 - 受体 - 供体 - π - 受体(D - A - D - π - A)型新型分子Q1D1 - Q1D3和Q2D2 - Q2D3。进行密度泛函理论(DFT)和含时密度泛函理论(TDDFT)计算,以研究受体和供体单元对所选分子的光物理、电子和NLO特性的影响。Q1和Q2在二甲基亚砜(DMSO)中的 值(321和319 nm)与实验值(326和323 nm)吻合良好。Q1D2表现出最大吸收峰位移(436 nm)。与母体化合物(Q1和Q2)相比,设计的化合物(Q1D3 - Q2D3)的吸收光谱边界增加且带隙减小。自然键轨道(NBO)研究表明,扩展的超共轭和强分子内相互作用在稳定这些体系中起重要作用。所有分子均表现出显著的NLO响应。Q1D2的 值很大(23885.90原子单位)。该理论框架揭示了新型喹啉 - 咔唑衍生物的NLO响应特性,这对于它们在先进应用中的使用可能具有重要意义。