Gao Wei, Lu Jianmin, Song Wenna, Hu Jianfang, Han Bingyong
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
RSC Adv. 2019 Jun 17;9(33):18888-18897. doi: 10.1039/c9ra02783a. eCollection 2019 Jun 14.
In this study, various interfacial interaction modes between silica and in-chain functionalized solution styrene butadiene rubbers (F-SSBRs) with -OH (3-mercaptopropanol, MPL), -COOH (11-mercaptoundecanoic acid, MUA), and -Si-(OCHCH) (3-mercaptopropyltriethoxysilane, MPTES) were constructed at the molecular level. As the modes of interfacial interaction followed the order of single hydrogen bond interactions to dual hydrogen/covalent bond interactions to single covalent bond interactions, the interfacial interactions presented silica/SSBR--MPL < silica/SSBR--MUA < silica/SSBR--MPTES. Moreover, the interfacial interactions were enhanced as the grafting percentages of the functional group increased. The results showed that silica dispersion was enhanced upon improving the interfacial interaction. As the filler-rubber networks improved and filler-filler networks decreased, the dynamic mechanical properties of the silica/F-SSBR composites improved and were even superior to those of the silica/SSBR/bis(γ-triethoxysilylpropyl)-tetrasulfide (Si69) composite. The rolling resistances of silica/SSBR--MPL, silica/SSBR--MUA, and silica/SSBR--MPTES composites decreased by 21.2%, 27.3%, and 50.8%, respectively. The wet skid resistances of silica/SSBR--MPL, silica/SSBR--MUA, and silica/SSBR--MPTES composites increased by 112.7%, 161.2%, and 184.3%, respectively. However, the excessively strong rubber-rubber networks led to poor mechanical properties. Filler-rubber, filler-filler, and rubber-rubber networks reached equilibrium in the silica/SSBR--MUA composite, which had excellent overall performances of high strength, low rolling resistance, and high wet skid resistance.
在本研究中,在分子水平上构建了二氧化硅与链内官能化溶液丁苯橡胶(F-SSBRs)之间的各种界面相互作用模式,这些F-SSBRs带有 -OH(3-巯基丙醇,MPL)、-COOH(11-巯基十一烷酸,MUA)和 -Si-(OCHCH)(3-巯基丙基三乙氧基硅烷,MPTES)。由于界面相互作用模式遵循单氢键相互作用到双氢/共价键相互作用再到单共价键相互作用的顺序,界面相互作用表现为二氧化硅/SSBR--MPL < 二氧化硅/SSBR--MUA < 二氧化硅/SSBR--MPTES。此外,随着官能团接枝率的增加,界面相互作用增强。结果表明,改善界面相互作用可增强二氧化硅的分散性。随着填料-橡胶网络增强而填料-填料网络减弱,二氧化硅/F-SSBR复合材料的动态力学性能得到改善,甚至优于二氧化硅/SSBR/双(γ-三乙氧基甲硅烷基丙基)-四硫化物(Si69)复合材料。二氧化硅/SSBR--MPL、二氧化硅/SSBR--MUA和二氧化硅/SSBR--MPTES复合材料的滚动阻力分别降低了21.2%、27.3%和50.8%。二氧化硅/SSBR--MPL、二氧化硅/SSBR--MUA和二氧化硅/SSBR--MPTES复合材料的湿滑阻力分别提高了112.7%、161.2%和184.3%。然而,过强的橡胶-橡胶网络导致力学性能不佳。填料-橡胶、填料-填料和橡胶-橡胶网络在二氧化硅/SSBR--MUA复合材料中达到平衡,该复合材料具有高强度、低滚动阻力和高湿滑阻力的优异综合性能。