靶向冠状病毒核衣壳蛋白的N端结构域通过变构调节诱导异常寡聚化。
Targeting the N-Terminus Domain of the Coronavirus Nucleocapsid Protein Induces Abnormal Oligomerization via Allosteric Modulation.
作者信息
Hsu Jia-Ning, Chen Jyun-Siao, Lin Shan-Meng, Hong Jhen-Yi, Chen Yi-Jheng, Jeng U-Ser, Luo Shun-Yuan, Hou Ming-Hon
机构信息
Institute of Genomics and Bioinformatics and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
Department of Chemistry, National Chung Hsing University, Taichung, Taiwan.
出版信息
Front Mol Biosci. 2022 Apr 19;9:871499. doi: 10.3389/fmolb.2022.871499. eCollection 2022.
Epidemics caused by coronaviruses (CoVs), namely the severe acute respiratory syndrome (SARS) (2003), Middle East respiratory syndrome (MERS) (2012), and coronavirus disease 2019 (COVID-19) (2019), have triggered a global public health emergency. Drug development against CoVs is inherently arduous. The nucleocapsid (N) protein forms an oligomer and facilitates binding with the viral RNA genome, which is critical in the life cycle of the virus. In the current study, we found a potential allosteric site (Site 1) using PARS, an online allosteric site predictor, in the CoV N-N-terminal RNA-binding domain (NTD) to modulate the N protein conformation. We identified 5-hydroxyindole as the lead via molecular docking to target Site 1. We designed and synthesized four 5-hydroxyindole derivatives, named P4-1 to P4-4, based on the pose of 5-hydroxyindole in the docking model complex. Small-angle X-ray scattering (SAXS) data indicate that two 5-hydroxyindole compounds with higher hydrophobic R-groups mediate the binding between N-NTD and N-C-terminal dimerization domain (CTD) and elicit high-order oligomerization of the whole N protein. Furthermore, the crystal structures suggested that these two compounds act on this novel cavity and create a flat surface with higher hydrophobicity, which may mediate the interaction between N-NTD and N-CTD. Taken together, we discovered an allosteric binding pocket targeting small molecules that induces abnormal aggregation of the CoV N protein. These novel concepts will facilitate protein-protein interaction (PPI)-based drug design against various CoVs.
由冠状病毒(CoV)引起的疫情,即严重急性呼吸综合征(SARS)(2003年)、中东呼吸综合征(MERS)(2012年)和2019冠状病毒病(COVID-19)(2019年),引发了全球公共卫生紧急事件。针对CoV的药物研发本质上十分艰巨。核衣壳(N)蛋白形成寡聚体并促进与病毒RNA基因组的结合,这在病毒的生命周期中至关重要。在本研究中,我们使用在线变构位点预测工具PARS在CoV N端RNA结合结构域(NTD)中发现了一个潜在的变构位点(位点1),以调节N蛋白的构象。我们通过分子对接确定5-羟基吲哚为靶向位点1的先导化合物。基于5-羟基吲哚在对接模型复合物中的姿态,我们设计并合成了四种5-羟基吲哚衍生物,命名为P4-1至P4-4。小角X射线散射(SAXS)数据表明,两种具有较高疏水性R基团的5-羟基吲哚化合物介导了N-NTD与N端二聚化结构域(CTD)之间的结合,并引发了整个N蛋白的高阶寡聚化。此外,晶体结构表明,这两种化合物作用于这个新的空腔并形成一个具有更高疏水性的平面,这可能介导了N-NTD与N-CTD之间的相互作用。综上所述,我们发现了一个靶向小分子的变构结合口袋,其可诱导CoV N蛋白异常聚集。这些新概念将促进针对各种CoV的基于蛋白质-蛋白质相互作用(PPI)的药物设计。
相似文献
Comput Struct Biotechnol J. 2021
Pharmaceuticals (Basel). 2022-8-24
Acta Crystallogr D Struct Biol. 2016-1-22
引用本文的文献
本文引用的文献
Microb Pathog. 2020-5-5
Nat Struct Mol Biol. 2020-5-7
Science. 2020-4-10
Nature. 2020-4-9