靶向 SARS-CoV-2 中的抗病毒 N 蛋白抑制剂与蛋白-蛋白相互作用界面。
Targeting protein-protein interaction interfaces with antiviral N protein inhibitor in SARS-CoV-2.
机构信息
Institute of Genomics and Bioinformatics and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan.
出版信息
Biophys J. 2024 Feb 20;123(4):478-488. doi: 10.1016/j.bpj.2024.01.013. Epub 2024 Jan 17.
Coronaviruses not only pose significant global public health threats but also cause extensive damage to livestock-based industries. Previous studies have shown that 5-benzyloxygramine (P3) targets the Middle East respiratory syndrome coronavirus (MERS-CoV) nucleocapsid (N) protein N-terminal domain (N-NTD), inducing non-native protein-protein interactions (PPIs) that impair N protein function. Moreover, P3 exhibits broad-spectrum antiviral activity against CoVs. The sequence similarity of N proteins is relatively low among CoVs, further exhibiting notable variations in the hydrophobic residue responsible for non-native PPIs in the N-NTD. Therefore, to ascertain the mechanism by which P3 demonstrates broad-spectrum anti-CoV activity, we determined the crystal structure of the SARS-CoV-2 N-NTD:P3 complex. We found that P3 was positioned in the dimeric N-NTD via hydrophobic contacts. Compared with the interfaces in MERS-CoV N-NTD, P3 had a reversed orientation in SARS-CoV-2 N-NTD. The Phe residue in the MERS-CoV N-NTD:P3 complex stabilized both P3 moieties. However, in the SARS-CoV-2 N-NTD:P3 complex, the Ile residue formed only one interaction with the P3 benzene ring. Moreover, the pocket in the SARS-CoV-2 N-NTD:P3 complex was more hydrophobic, favoring the insertion of the P3 benzene ring into the complex. Nevertheless, hydrophobic interactions remained the primary stabilizing force in both complexes. These findings suggested that despite the differences in the sequence, P3 can accommodate a hydrophobic pocket in N-NTD to mediate a non-native PPI, enabling its effectiveness against various CoVs.
冠状病毒不仅对全球公共卫生构成重大威胁,还对畜牧业造成严重破坏。先前的研究表明,5-苄氧基鸟嘌呤(P3)靶向中东呼吸综合征冠状病毒(MERS-CoV)核衣壳(N)蛋白 N 端结构域(N-NTD),诱导非天然蛋白质-蛋白质相互作用(PPIs),从而损害 N 蛋白功能。此外,P3 对冠状病毒具有广谱抗病毒活性。冠状病毒 N 蛋白之间的序列相似性相对较低,进一步表现出 N-NTD 中负责非天然 PPIs 的疏水性残基的显著变化。因此,为了确定 P3 表现出广谱抗 CoV 活性的机制,我们测定了 SARS-CoV-2 N-NTD:P3 复合物的晶体结构。我们发现 P3 通过疏水接触定位于二聚体 N-NTD 中。与 MERS-CoV N-NTD 的界面相比,P3 在 SARS-CoV-2 N-NTD 中的取向相反。MERS-CoV N-NTD:P3 复合物中的苯丙氨酸残基稳定了两个 P3 部分。然而,在 SARS-CoV-2 N-NTD:P3 复合物中,异亮氨酸残基仅与 P3 苯环形成一个相互作用。此外,SARS-CoV-2 N-NTD:P3 复合物中的口袋更疏水,有利于 P3 苯环插入复合物。然而,疏水相互作用仍然是两个复合物的主要稳定力。这些发现表明,尽管序列存在差异,P3 可以适应 N-NTD 中的疏水口袋来介导非天然 PPI,从而使其能够有效对抗各种 CoV。