Suppr超能文献

靶向 SARS-CoV-2 中的抗病毒 N 蛋白抑制剂与蛋白-蛋白相互作用界面。

Targeting protein-protein interaction interfaces with antiviral N protein inhibitor in SARS-CoV-2.

机构信息

Institute of Genomics and Bioinformatics and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.

Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan.

出版信息

Biophys J. 2024 Feb 20;123(4):478-488. doi: 10.1016/j.bpj.2024.01.013. Epub 2024 Jan 17.

Abstract

Coronaviruses not only pose significant global public health threats but also cause extensive damage to livestock-based industries. Previous studies have shown that 5-benzyloxygramine (P3) targets the Middle East respiratory syndrome coronavirus (MERS-CoV) nucleocapsid (N) protein N-terminal domain (N-NTD), inducing non-native protein-protein interactions (PPIs) that impair N protein function. Moreover, P3 exhibits broad-spectrum antiviral activity against CoVs. The sequence similarity of N proteins is relatively low among CoVs, further exhibiting notable variations in the hydrophobic residue responsible for non-native PPIs in the N-NTD. Therefore, to ascertain the mechanism by which P3 demonstrates broad-spectrum anti-CoV activity, we determined the crystal structure of the SARS-CoV-2 N-NTD:P3 complex. We found that P3 was positioned in the dimeric N-NTD via hydrophobic contacts. Compared with the interfaces in MERS-CoV N-NTD, P3 had a reversed orientation in SARS-CoV-2 N-NTD. The Phe residue in the MERS-CoV N-NTD:P3 complex stabilized both P3 moieties. However, in the SARS-CoV-2 N-NTD:P3 complex, the Ile residue formed only one interaction with the P3 benzene ring. Moreover, the pocket in the SARS-CoV-2 N-NTD:P3 complex was more hydrophobic, favoring the insertion of the P3 benzene ring into the complex. Nevertheless, hydrophobic interactions remained the primary stabilizing force in both complexes. These findings suggested that despite the differences in the sequence, P3 can accommodate a hydrophobic pocket in N-NTD to mediate a non-native PPI, enabling its effectiveness against various CoVs.

摘要

冠状病毒不仅对全球公共卫生构成重大威胁,还对畜牧业造成严重破坏。先前的研究表明,5-苄氧基鸟嘌呤(P3)靶向中东呼吸综合征冠状病毒(MERS-CoV)核衣壳(N)蛋白 N 端结构域(N-NTD),诱导非天然蛋白质-蛋白质相互作用(PPIs),从而损害 N 蛋白功能。此外,P3 对冠状病毒具有广谱抗病毒活性。冠状病毒 N 蛋白之间的序列相似性相对较低,进一步表现出 N-NTD 中负责非天然 PPIs 的疏水性残基的显著变化。因此,为了确定 P3 表现出广谱抗 CoV 活性的机制,我们测定了 SARS-CoV-2 N-NTD:P3 复合物的晶体结构。我们发现 P3 通过疏水接触定位于二聚体 N-NTD 中。与 MERS-CoV N-NTD 的界面相比,P3 在 SARS-CoV-2 N-NTD 中的取向相反。MERS-CoV N-NTD:P3 复合物中的苯丙氨酸残基稳定了两个 P3 部分。然而,在 SARS-CoV-2 N-NTD:P3 复合物中,异亮氨酸残基仅与 P3 苯环形成一个相互作用。此外,SARS-CoV-2 N-NTD:P3 复合物中的口袋更疏水,有利于 P3 苯环插入复合物。然而,疏水相互作用仍然是两个复合物的主要稳定力。这些发现表明,尽管序列存在差异,P3 可以适应 N-NTD 中的疏水口袋来介导非天然 PPI,从而使其能够有效对抗各种 CoV。

相似文献

1
Targeting protein-protein interaction interfaces with antiviral N protein inhibitor in SARS-CoV-2.
Biophys J. 2024 Feb 20;123(4):478-488. doi: 10.1016/j.bpj.2024.01.013. Epub 2024 Jan 17.
2
Structure-Based Stabilization of Non-native Protein-Protein Interactions of Coronavirus Nucleocapsid Proteins in Antiviral Drug Design.
J Med Chem. 2020 Mar 26;63(6):3131-3141. doi: 10.1021/acs.jmedchem.9b01913. Epub 2020 Mar 11.
4
Unlocking COVID therapeutic targets: A structure-based rationale against SARS-CoV-2, SARS-CoV and MERS-CoV Spike.
Comput Struct Biotechnol J. 2020 Jul 31;18:2117-2131. doi: 10.1016/j.csbj.2020.07.017. eCollection 2020.
5
Pan-beta-coronavirus subunit vaccine prevents SARS-CoV-2 Omicron, SARS-CoV, and MERS-CoV challenge.
J Virol. 2024 Sep 17;98(9):e0037624. doi: 10.1128/jvi.00376-24. Epub 2024 Aug 27.
7
Mechanistic and thermodynamic characterization of antiviral inhibitors targeting nucleocapsid N-terminal domain of SARS-CoV-2.
Arch Biochem Biophys. 2023 Dec;750:109820. doi: 10.1016/j.abb.2023.109820. Epub 2023 Nov 11.
8
The Glycan-Binding Trait of the Sarbecovirus Spike N-Terminal Domain Reveals an Evolutionary Footprint.
J Virol. 2022 Aug 10;96(15):e0095822. doi: 10.1128/jvi.00958-22. Epub 2022 Jul 19.
9
Interactions of SARS-CoV-2 and MERS-CoV fusion peptides measured using single-molecule force methods.
Biophys J. 2023 Feb 21;122(4):646-660. doi: 10.1016/j.bpj.2023.01.016. Epub 2023 Jan 16.

本文引用的文献

1
Targeting the N-Terminus Domain of the Coronavirus Nucleocapsid Protein Induces Abnormal Oligomerization via Allosteric Modulation.
Front Mol Biosci. 2022 Apr 19;9:871499. doi: 10.3389/fmolb.2022.871499. eCollection 2022.
2
Increased immune escape of the new SARS-CoV-2 variant of concern Omicron.
Cell Mol Immunol. 2022 Feb;19(2):293-295. doi: 10.1038/s41423-021-00836-z. Epub 2022 Jan 11.
4
ChAdOx1 nCoV-19 Vaccine Efficacy against the B.1.351 Variant. Reply.
N Engl J Med. 2021 Aug 5;385(6):571-572. doi: 10.1056/NEJMc2110093. Epub 2021 Jul 21.
5
SARS-CoV-2 variants, spike mutations and immune escape.
Nat Rev Microbiol. 2021 Jul;19(7):409-424. doi: 10.1038/s41579-021-00573-0. Epub 2021 Jun 1.
6
Antibody evasion by the P.1 strain of SARS-CoV-2.
Cell. 2021 May 27;184(11):2939-2954.e9. doi: 10.1016/j.cell.2021.03.055. Epub 2021 Mar 30.
7
Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity.
Cell. 2021 Apr 29;184(9):2372-2383.e9. doi: 10.1016/j.cell.2021.03.013. Epub 2021 Mar 12.
9
Covid-19: Where are we on vaccines and variants?
BMJ. 2021 Mar 2;372:n597. doi: 10.1136/bmj.n597.
10
Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein.
PLoS Pathog. 2020 Dec 2;16(12):e1009100. doi: 10.1371/journal.ppat.1009100. eCollection 2020 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验