Suppr超能文献

嵌入三维石墨烯气凝胶中的超分散二氧化钛纳米颗粒用于高性能硫阴极。

Ultradispersed titanium dioxide nanoparticles embedded in a three-dimensional graphene aerogel for high performance sulfur cathodes.

作者信息

Liu Mengmeng, Zhu Xiaohang, Ma Tianye, Zhang Congcong, Chen Xiang, Zhang Xiuhui, Huang Tao, Li Wei, Yu Aishui

机构信息

Laboratory of Advanced Materials, Fudan University Shanghai 200438 China

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University Shanghai 200438 China

出版信息

RSC Adv. 2019 Feb 25;9(12):6568-6575. doi: 10.1039/c8ra10397f. eCollection 2019 Feb 22.

Abstract

Lithium-sulfur (Li-S) batteries are regarded as one of the most promising energy storage technologies, however, their practical application is greatly limited by a series of sulfur cathode challenges such as the notorious "shuttle effect", low conductivity and large volume change. Here, we develop a facile hydrothermal method for the large scale synthesis of sulfur hosts consisting of three-dimensional graphene aerogel with tiny TiO nanoparticles (5-10 nm) uniformly dispersed on the graphene sheet (GA-TiO). The obtained GA-TiO composites have a high surface area of ∼360 m g and a hierarchical porous structure, which facilitates the encapsulation of sulfur in the carbon matrix. The resultant GA-TiO/S composites exhibit a high initial discharge capacity of 810 mA h g with an ultralow capacity fading of 0.054% per cycle over 700 cycles at 2C, and a high rate (5C) performance (396 mA h g). Such architecture design paves a new way to synthesize well-defined sulfur hosts to tackle the challenges for high performance Li-S batteries.

摘要

锂硫(Li-S)电池被认为是最具前景的储能技术之一,然而,它们的实际应用受到一系列硫阴极挑战的极大限制,如臭名昭著的“穿梭效应”、低导电性和大体积变化。在此,我们开发了一种简便的水热法,用于大规模合成由三维石墨烯气凝胶组成的硫主体材料,其中微小的TiO纳米颗粒(5-10纳米)均匀分散在石墨烯片上(GA-TiO)。所获得的GA-TiO复合材料具有约360 m²/g的高表面积和分级多孔结构,这有利于将硫封装在碳基质中。所得的GA-TiO/S复合材料在2C下具有810 mA h/g的高初始放电容量,在700次循环中每循环的超低容量衰减率为0.054%,并具有高倍率(5C)性能(396 mA h/g)。这种结构设计为合成明确的硫主体材料以应对高性能锂硫电池的挑战开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d08d/9060913/c2dbcb9b8e6a/c8ra10397f-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验