Rehberger Miriam, Schäfer Jonas A, Krampitz Anna-Maria, Bretz Anne Catherine, Jost Lukas, Haferlach Torsten, Stiewe Thorsten, Neubauer Andreas
Department of Internal Medicine, Hematology, Oncology and Immunology, Philipps University Marburg and University Hospital Gießen and Marburg and Carreras Leukemia Center, Marburg, Germany.
Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Germany.
Hemasphere. 2022 Apr 26;6(5):e0708. doi: 10.1097/HS9.0000000000000708. eCollection 2022 May.
Resistance to cytarabine is a key problem in the treatment of acute myeloid leukemia (AML). To understand the molecular biology of resistance to cytarabine, a viability-based chemosensitizer screen was utilized. We screened synthetic lethal targets using 437 different small interfering RNAs (siRNAs) directed against factors involved in DNA repair mechanisms and cytarabine as the chemical compound. Three hits were identified: , , and . We show here that the ubiquitin ligase CULLIN 4A (CUL4A) and the tumor-suppressive transcription factor p73 contribute to drug resistance by modulating DNA damage response. P73 confers resistance to cytarabine therapy by transactivation of , encoding the catalytic subunit of translesion DNA polymerase ζ, and probably by influencing proliferating cell nuclear antigen (PCNA) and the polymerase switch towards error-prone translesion DNA polymerases. Abrogation of the polymerase ζ by siRNA causes identical effects as siRNAs against or and resensitizes cells towards cytarabine therapy in vitro. As CUL4A needs to be activated by neddylation to facilitate the degradation of several proteins including PCNA, we propose a novel explanation for the synergism between cytarabine and the neddylation inhibitor pevonedistat by inhibition of translesion synthesis. In keeping with this, in AML patients treated with cytarabine, we found high expression of and to be associated with poor prognosis.
对阿糖胞苷的耐药性是急性髓系白血病(AML)治疗中的一个关键问题。为了了解对阿糖胞苷耐药的分子生物学机制,我们利用了基于细胞活力的化学增敏剂筛选方法。我们使用437种不同的针对DNA修复机制相关因子的小干扰RNA(siRNA)以及阿糖胞苷作为化合物来筛选合成致死靶点。确定了三个命中靶点: 、 和 。我们在此表明,泛素连接酶CULLIN 4A(CUL4A)和肿瘤抑制转录因子p73通过调节DNA损伤反应来促进耐药性。p73通过转录激活 (编码跨损伤DNA聚合酶ζ的催化亚基)赋予对阿糖胞苷治疗的耐药性,并且可能通过影响增殖细胞核抗原(PCNA)以及聚合酶向易出错的跨损伤DNA聚合酶转换来实现。用siRNA消除聚合酶ζ会产生与针对 或 的siRNA相同的效果,并在体外使细胞对阿糖胞苷治疗重新敏感。由于CUL4A需要通过NEDD化激活以促进包括PCNA在内的几种蛋白质的降解,我们通过抑制跨损伤合成对阿糖胞苷与NEDD化抑制剂pevonedistat之间的协同作用提出了一种新的解释。与此一致的是,在接受阿糖胞苷治疗的AML患者中,我们发现 和 的高表达与不良预后相关。