Yuan Yuan, Wei Jianwen, Geng Linlin, Mei Dejun, Liao Lei
Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment, Guilin University of Technology Guilin 541004 PR China
RSC Adv. 2020 Sep 15;10(56):34187-34196. doi: 10.1039/d0ra05044j. eCollection 2020 Sep 10.
An amine-bifunctionalized composite strategy was used to fabricate grafted-impregnated micro-/mesoporous composites for carbon dioxide capture. The micro-/mesoporous Beta/KIT-6 (BK) composite containing a high-silica zeolite with a three-dimensional twelve-membered ring crossing channel system and cubic structural silica was used as a support, and 3-aminopropyltrimethoxysilane (APTS) and tetraethylenepentamine (TEPA) were used as the grafted and impregnated components, respectively. The amine efficiency, adsorption kinetics, thermal stability, regeneration performance, and the effects of impregnated amine loadings (30-60%) and temperatures (40-90 °C) on the CO adsorption performance were investigated using a thermal gravimetric analyzer (TGA) in the mixed gases (15 vol% CO and 85 vol% N). At 60 °C, the bifunctionalized Beta/KIT-6 (1 mL APTS g BK) displayed the highest CO adsorption capacity of 5.12 mmol g at a TEPA loading of 50%. The kinetic model fitting results showed that the CO adsorption process was a combination of physical and chemical adsorption, wherein the chemical adsorption is dominant. After five adsorption/desorption cycle regenerations, the saturated adsorption capacity of the composite material was 4.86 mmol g, which was only 5.1% lower than the original adsorption capacity. The composites demonstrated excellent CO adsorption performance, indicating the promising future of these adsorbents for CO capture from actual flue gas after desulfurization.
采用胺基双功能化复合策略制备了用于二氧化碳捕集的接枝-浸渍型微孔/介孔复合材料。以含有具有三维十二元环交叉通道系统的高硅沸石和立方结构二氧化硅的微孔/介孔Beta/KIT-6(BK)复合材料为载体,分别使用3-氨丙基三甲氧基硅烷(APTS)和四乙烯五胺(TEPA)作为接枝和浸渍组分。在混合气体(15体积%CO和85体积%N)中,使用热重分析仪(TGA)研究了胺效率、吸附动力学、热稳定性、再生性能以及浸渍胺负载量(30 - 60%)和温度(40 - 90℃)对CO吸附性能的影响。在60℃下,双功能化的Beta/KIT-6(1 mL APTS/g BK)在TEPA负载量为50%时显示出最高的CO吸附容量,为5.12 mmol/g。动力学模型拟合结果表明,CO吸附过程是物理吸附和化学吸附的组合,其中化学吸附占主导。经过五次吸附/解吸循环再生后,复合材料的饱和吸附容量为4.86 mmol/g,仅比原始吸附容量低5.1%。该复合材料表现出优异的CO吸附性能,表明这些吸附剂在从实际脱硫后烟道气中捕集CO方面具有广阔的应用前景。