Suppr超能文献

一种创新的基于生物可吸收明胶的3D支架,可维持脂肪组织来源干细胞的干性和分化神经元的可塑性。

An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons.

作者信息

Martin Catherine Ann, Radhakrishnan Subathra, Nagarajan Sakthivel, Muthukoori Shanthini, Dueñas J M Meseguer, Gómez Ribelles José Luis, Lakshmi Baddrireddi Subhadra, E A K Nivethaa, Gómez-Tejedor José Antonio, Reddy Mettu Srinivas, Sellathamby Shanmugaapriya, Rela Mohamed, Subbaraya Narayana Kalkura

机构信息

Crystal Growth Centre, Anna University Chennai India

National Foundation for Liver Research, Global Hospitals & Health City Chennai India.

出版信息

RSC Adv. 2019 May 8;9(25):14452-14464. doi: 10.1039/c8ra09688k. eCollection 2019 May 7.

Abstract

Neural tissue engineering aims at producing a simulated environment using a matrix that is suitable to grow specialized neurons/glial cells pertaining to CNS/PNS which replace damaged or lost tissues. The primary goal of this study is to design a compatible scaffold that supports the development of neural-lineage cells which aids in neural regeneration. The fabricated, freeze-dried scaffolds consisted of biocompatible, natural and synthetic polymers: gelatin and polyvinyl pyrrolidone. Physiochemical characterization was carried out using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) imaging. The 3D construct retains good swelling proficiency and holds the integrated structure that supports cell adhesion and proliferation. The composite of PVP-gelatin is blended in such a way that it matches the mechanical strength of the brain tissue. The cytocompatibility analysis shows that the scaffolds are compatible and permissible for the growth of both stem cells as well as differentiated neurons. A change in the ratios of the scaffold components resulted in varied sizes of pores giving diverse surface morphology, greatly influencing the properties of the neurons. However, there is no change in stem cell properties. Different types of neurons are characterized by the type of gene associated with the neurotransmitter secreted by them. The change in the neuron properties could be attributed to neuroplasticity. The plasticity of the neurons was analyzed using quantitative gene expression studies. It has been observed that the gelatin-rich construct supports the prolonged proliferation of stem cells and multiple neurons along with their plasticity.

摘要

神经组织工程旨在利用一种基质构建一个模拟环境,该基质适合培养中枢神经系统/外周神经系统中特定的神经元/神经胶质细胞,以替代受损或缺失的组织。本研究的主要目标是设计一种兼容的支架,以支持神经谱系细胞的发育,从而有助于神经再生。制备的冻干支架由生物相容性的天然和合成聚合物组成:明胶和聚乙烯吡咯烷酮。使用傅里叶变换红外光谱(FT-IR)和扫描电子显微镜(SEM)成像进行了物理化学表征。这种三维结构保留了良好的溶胀能力,并保持了支持细胞黏附和增殖的整体结构。聚乙烯吡咯烷酮-明胶复合材料的混合方式使其与脑组织的机械强度相匹配。细胞相容性分析表明,该支架对于干细胞和分化神经元的生长都是兼容且允许的。支架成分比例的变化导致了不同大小的孔隙,从而产生了多样的表面形态,极大地影响了神经元的特性。然而,干细胞的特性没有变化。不同类型的神经元由与其分泌的神经递质相关的基因类型所表征。神经元特性的变化可能归因于神经可塑性。使用定量基因表达研究分析了神经元的可塑性。据观察,富含明胶的构建体支持干细胞和多种神经元的长期增殖及其可塑性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8a9/9064131/b87d707a6cbb/c8ra09688k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验