Suppr超能文献

用于锂离子电池的纳米尺寸海胆状磷酸铁锂的合成。

Synthesis of nano-sized urchin-shaped LiFePO for lithium ion batteries.

作者信息

Yang Changjin, Lee Doo Jin, Kim Hyunhong, Kim Kangyong, Joo Jinwhan, Kim Won Bae, Song Yong Bae, Jung Yoon Seok, Park Jongnam

机构信息

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea

Department of Chemical Engineering, Pohang University of Science and Technology Pohang 790-784 Republic of Korea.

出版信息

RSC Adv. 2019 May 3;9(24):13714-13721. doi: 10.1039/c9ra00897g. eCollection 2019 Apr 30.

Abstract

In this article, the facile synthesis of sea urchin-shaped LiFePO nanoparticles by thermal decomposition of metal-surfactant complexes and application of these nanoparticles as a cathode in lithium ion secondary batteries is demonstrated. The advantages of this work are a facile method to synthesize interesting LiFePO nanostructures and its synthetic mechanism. Accordingly, the morphology of LiFePO particles could be regulated by the injection of oleylamine, with other surfactants and phosphoric acid. This injection step was critical to tailor the morphology of LiFePO particles, converting them from nanosphere shapes to diverse types of urchin-shaped nanoparticles. Electron microscopy analysis showed that the overall dimension of the urchin-shaped LiFePO particles varied from 300 nm to 2 μm. A closer observation revealed that numerous thin nanorods ranging from 5 to 20 nm in diameter were attached to the nanoparticles. The hierarchical nanostructure of these urchin-shaped LiFePO particles mitigated the low tap density problem. In addition, the nanorods less than 20 nm attached to the edge of urchin-shaped nanoparticles significantly increased the pathways for electronic transport.

摘要

本文展示了通过金属表面活性剂配合物的热分解简便合成海胆状磷酸铁锂纳米颗粒,并将这些纳米颗粒用作锂离子二次电池的阴极。这项工作的优点在于合成有趣的磷酸铁锂纳米结构的简便方法及其合成机理。因此,通过注入油胺、其他表面活性剂和磷酸,可以调节磷酸铁锂颗粒的形态。这个注入步骤对于定制磷酸铁锂颗粒的形态至关重要,能将它们从纳米球形状转变为各种类型的海胆状纳米颗粒。电子显微镜分析表明,海胆状磷酸铁锂颗粒的整体尺寸在300纳米至2微米之间变化。更仔细的观察发现,许多直径在5至20纳米之间的细纳米棒附着在纳米颗粒上。这些海胆状磷酸铁锂颗粒的分级纳米结构缓解了低振实密度问题。此外,附着在海胆状纳米颗粒边缘的小于20纳米的纳米棒显著增加了电子传输途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/9063919/bf6118a32413/c9ra00897g-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验