Akbar S, Hasanain S K, Ivashenko O, Dutka M V, Ali N Z, Blake G R, De Hosson J Th M, Rudolf P
Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 NL-9747AG Groningen The Netherlands
Department of Physics, Quaid-i-Azam University Islamabad Pakistan.
RSC Adv. 2020 Jul 13;10(44):26342-26348. doi: 10.1039/d0ra03644g. eCollection 2020 Jul 9.
To explore the role of Li in establishing room-temperature ferromagnetism in SnO, the structural, electronic and magnetic properties of Li-doped SnO compounds were studied for different size regimes, from nanoparticles to bulk crystals. Li-doped nanoparticles show ferromagnetic ordering plus a paramagnetic contribution for particle sizes in the range of 16-51 nm, while pure SnO and Li-doped compounds below and above this particular size range are diamagnetic. The magnetic moment is larger for compositions where the Li substitutes for Sn than for compositions where Li prevalently occupies interstitial sites. The observed ferromagnetic ordering in Li-doped SnO nanoparticles is mainly due to the holes created when Li substitutes at a Sn site. Conversely, Li acts as an electron donor and electrons from Li may combine with holes to decrease ferromagnetism when lithium mainly occupies interstitial sites in the SnO lattice.
为了探究锂在氧化锡中建立室温铁磁性的作用,我们研究了不同尺寸范围(从纳米颗粒到块状晶体)的锂掺杂氧化锡化合物的结构、电子和磁性特性。锂掺杂的纳米颗粒在粒径为16 - 51 nm范围内呈现铁磁有序以及顺磁贡献,而在此特定尺寸范围以下和以上的纯氧化锡及锂掺杂化合物均为抗磁性。当锂替代锡时,其组成的磁矩比锂主要占据间隙位置时的组成磁矩更大。在锂掺杂的氧化锡纳米颗粒中观察到的铁磁有序主要归因于锂替代锡位点时产生的空穴。相反,当锂主要占据氧化锡晶格中的间隙位置时,锂作为电子供体,来自锂的电子可能与空穴结合以降低铁磁性。