Liu Yang, Shao Wenli, Zheng Yi, Zhang Chenyang, Zhou Weixia, Zhang Xueqin, Liu Yongjun
College of Chemical Engineering, Huaqiao University Xiamen 361021 P. R. China
Institution of Chemical Process and Intrinsic Safety, Huaqiao University Xiamen 361021 P. R. China.
RSC Adv. 2020 Jul 14;10(44):26451-26459. doi: 10.1039/d0ra03074k. eCollection 2020 Jul 9.
In this study, a core-shell catalyst based on FeC@ZSM-5 (ZSM-5 capped FeC as active phase) is prepared by the coating-carbonization method for Fischer-Tropsch synthesis (FTS). Further, the designed ZSM-5 zeolites are utilized to screen the low carbon hydrocarbons from the products generated on the iron carbide active centre, and for catalytic disassembly of the long-chain hydrocarbons into low carbon olefins. Prior to utilization, the physical-chemical properties of the prepared catalysts are systematically characterized by various techniques of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM) observations, in addition to the effects of coating-carbonization, molecular sieve coating amount, and K-doping on core-shell iron-based catalysts. Next, the performance of Fischer-Tropsch synthesis is investigated in a micro-fixed bed reactor. The results manifest that, comparing with FeC and a supported Fe/ZSM-5 catalyst prepared by the traditional impregnation method, the core-shell FeC@ZSM-5 catalysts show higher CO conversion rate, reaction activity and selectivity to low-carbon olefins. Comparatively, the FeC@ZSM-5C catalyst prepared by carbonization after the coating method exhibited more surface area, smaller average pore size, and more reactive active sites, resulting in the improvement of screening of high carbon hydrocarbons and the enhancement of selectivity to low carbon olefins, in comparison to those prepared by the carbonization-coating method. In conclusion, the K-doping catalyst had significantly improved the reactive activity of the core-shell FeC@ZSM-5 catalyst and the selectivity to low carbon olefins, while the CO conversion on K-FeC@ZSM-20C still remained good.
在本研究中,采用包覆碳化法制备了一种基于FeC@ZSM-5(以ZSM-5包覆FeC作为活性相)的核壳催化剂,用于费托合成(FTS)。此外,所设计的ZSM-5沸石用于从碳化铁活性中心生成的产物中筛选低碳烃,并将长链烃催化分解为低碳烯烃。在使用之前,通过X射线衍射(XRD)、布鲁诺尔-埃米特-泰勒(BET)、傅里叶变换红外(FT-IR)、扫描电子显微镜(SEM)以及透射电子显微镜(TEM)观察等多种技术,系统地表征了所制备催化剂的物理化学性质,此外还研究了包覆碳化、分子筛包覆量和K掺杂对核壳铁基催化剂的影响。接下来,在微型固定床反应器中研究了费托合成的性能。结果表明,与FeC和传统浸渍法制备的负载型Fe/ZSM-5催化剂相比,核壳FeC@ZSM-5催化剂表现出更高的CO转化率、反应活性和对低碳烯烃的选择性。相比之下,包覆法后碳化制备的FeC@ZSM-5C催化剂具有更大的表面积、更小的平均孔径和更多的活性反应位点,与碳化包覆法制备的催化剂相比,其对高碳烃的筛选能力得到提高,对低碳烯烃的选择性增强。总之,K掺杂催化剂显著提高了核壳FeC@ZSM-5催化剂的反应活性和对低碳烯烃的选择性,而K-FeC@ZSM-20C上的CO转化率仍然良好。