Gujar Jamna Prasad, Modhera Bharat
Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, 462 003, India.
Environ Sci Pollut Res Int. 2024 Apr;31(19):28353-28367. doi: 10.1007/s11356-024-33031-4. Epub 2024 Mar 27.
This study investigates the production of solketal (2,2-dimethyl-1,3-dioxolane-4-methanol) from glycerol via ketalization reaction using M-ZSM-5 catalysts (M = Fe, Co, Ni, Cu, and Zn). The wet impregnation method ensured precise metal loading and versatility in catalyst preparation. We present a novel approach by employing a suite of characterization techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), Thermogravimetric analysis (TGA), and Field-emission scanning electron microscopy (FE-SEM), to elucidate the catalyst's structure, bonding, surface area, thermal stability, and morphology, ultimately linking these properties to their performance. Solketal synthesis was optimized in a reactor, with parameters like temperature, glycerol:acetone molar ratio, catalyst amount, reaction time, and stirring speed. Optimal conditions were identified as 60 °C, 1:4, 0.2 g, 60 min, and 1200 rpm, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis confirmed successful solketal formation. Among M-ZSM-5 catalysts tested, Cu-ZSM-5 emerged the most efficient, achieving an impressive 99% glycerol conversion and 96% solketal selectivity. Notably, Cu-ZSM-5 catalyst displayed exceptional reusability, regaining its initial activity through calcination, thus minimizing waste generation. This research unveils Cu-ZSM-5 as a highly efficient catalyst and promotes sustainability by utilizing a renewable glycerol feedstock to produce valuable solketal with applications in fuel additives, solvents, and pharmaceuticals. This work paves the way for developing environmentally friendly processes for waste valorization and producing valuable bio-based chemicals.
本研究考察了使用M-ZSM-5催化剂(M =铁、钴、镍、铜和锌)通过缩酮化反应由甘油制备丙酮缩甘油(2,2-二甲基-1,3-二氧戊环-4-甲醇)。湿浸渍法确保了精确的金属负载量以及催化剂制备的通用性。我们采用了一系列表征技术,包括X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、布鲁诺尔-埃米特-泰勒(BET)法、热重分析(TGA)和场发射扫描电子显微镜(FE-SEM),提出了一种新颖的方法来阐明催化剂的结构、键合、表面积、热稳定性和形态,最终将这些性质与其性能联系起来。在反应器中对丙酮缩甘油的合成进行了优化,优化了温度、甘油:丙酮摩尔比、催化剂量、反应时间和搅拌速度等参数。确定的最佳条件分别为60℃、1:4、0.2 g、60分钟和1200转/分钟。气相色谱-质谱(GC-MS)分析证实成功形成了丙酮缩甘油。在所测试的M-ZSM-5催化剂中,Cu-ZSM-5表现出最高的效率,甘油转化率达到了令人印象深刻的99%,丙酮缩甘油选择性达到了96%。值得注意的是,Cu-ZSM-5催化剂表现出优异的可重复使用性,通过煅烧恢复其初始活性,从而将废物产生降至最低。本研究揭示了Cu-ZSM-5是一种高效催化剂,并通过利用可再生甘油原料生产具有燃料添加剂、溶剂和药物应用价值的丙酮缩甘油来促进可持续性。这项工作为开发环境友好的废物增值工艺和生产有价值的生物基化学品铺平了道路。