Suppr超能文献

植物中金属和类金属的稳定同位素分馏:综述

Stable Isotope Fractionation of Metals and Metalloids in Plants: A Review.

作者信息

Wiggenhauser Matthias, Moore Rebekah E T, Wang Peng, Bienert Gerd Patrick, Laursen Kristian Holst, Blotevogel Simon

机构信息

Group of Plant Nutrition, Department of Environmental System Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.

MAGIC Group, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom.

出版信息

Front Plant Sci. 2022 Apr 19;13:840941. doi: 10.3389/fpls.2022.840941. eCollection 2022.

Abstract

This work critically reviews stable isotope fractionation of essential (B, Mg, K, Ca, Fe, Ni, Cu, Zn, Mo), beneficial (Si), and non-essential (Cd, Tl) metals and metalloids in plants. The review (i) provides basic principles and methodologies for non-traditional isotope analyses, (ii) compiles isotope fractionation for uptake and translocation for each element and connects them to physiological processes, and (iii) interlinks knowledge from different elements to identify common and contrasting drivers of isotope fractionation. Different biological and physico-chemical processes drive isotope fractionation in plants. During uptake, Ca and Mg fractionate through root apoplast adsorption, Si through diffusion during membrane passage, Fe and Cu through reduction prior to membrane transport in strategy I plants, and Zn, Cu, and Cd through membrane transport. During translocation and utilization, isotopes fractionate through precipitation into insoluble forms, such as phytoliths (Si) or oxalate (Ca), structural binding to cell walls (Ca), and membrane transport and binding to soluble organic ligands (Zn, Cd). These processes can lead to similar (Cu, Fe) and opposing (Ca vs. Mg, Zn vs. Cd) isotope fractionation patterns of chemically similar elements in plants. Isotope fractionation in plants is influenced by biotic factors, such as phenological stages and plant genetics, as well as abiotic factors. Different nutrient supply induced shifts in isotope fractionation patterns for Mg, Cu, and Zn, suggesting that isotope process tracing can be used as a tool to detect and quantify different uptake pathways in response to abiotic stresses. However, the interpretation of isotope fractionation in plants is challenging because many isotope fractionation factors associated with specific processes are unknown and experiments are often exploratory. To overcome these limitations, fundamental geochemical research should expand the database of isotope fractionation factors and disentangle kinetic and equilibrium fractionation. In addition, plant growth studies should further shift toward hypothesis-driven experiments, for example, by integrating contrasting nutrient supplies, using established model plants, genetic approaches, and by combining isotope analyses with complementary speciation techniques. To fully exploit the potential of isotope process tracing in plants, the interdisciplinary expertise of plant and isotope geochemical scientists is required.

摘要

这项工作对植物中必需元素(硼、镁、钾、钙、铁、镍、铜、锌、钼)、有益元素(硅)和非必需元素(镉、铊)的稳定同位素分馏进行了批判性综述。该综述:(i)提供了非传统同位素分析的基本原理和方法;(ii)汇编了每种元素吸收和转运过程中的同位素分馏情况,并将它们与生理过程联系起来;(iii)将不同元素的知识相互联系起来,以确定同位素分馏的共同驱动因素和不同驱动因素。不同的生物和物理化学过程驱动着植物中的同位素分馏。在吸收过程中,钙和镁通过根质外体吸附进行分馏,硅通过膜通道扩散进行分馏,在策略I植物中,铁和铜在膜运输之前通过还原进行分馏,锌、铜和镉通过膜运输进行分馏。在转运和利用过程中,同位素通过沉淀为不溶性形式(如植硅体(硅)或草酸盐(钙))、与细胞壁的结构结合(钙)以及膜运输和与可溶性有机配体的结合(锌、镉)进行分馏。这些过程可导致植物中化学性质相似的元素出现相似(铜、铁)和相反(钙与镁、锌与镉)的同位素分馏模式。植物中的同位素分馏受生物因素(如物候阶段和植物遗传学)以及非生物因素的影响。不同的养分供应会导致镁、铜和锌的同位素分馏模式发生变化,这表明同位素过程追踪可作为一种工具,用于检测和量化不同的吸收途径以应对非生物胁迫。然而,植物中同位素分馏的解释具有挑战性,因为许多与特定过程相关的同位素分馏因子尚不清楚,而且实验往往具有探索性。为克服这些限制,基础地球化学研究应扩大同位素分馏因子的数据库,并区分动力学分馏和平衡分馏。此外,植物生长研究应进一步转向以假设为驱动的实验,例如,通过整合对比性的养分供应、使用已确立的模式植物、采用遗传学方法,并将同位素分析与互补的形态分析技术相结合。为充分发挥植物中同位素过程追踪的潜力,需要植物和同位素地球化学科学家的跨学科专业知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f10/9063737/01fb50ea75e1/fpls-13-840941-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验