Long Xinxin, Chen Rongzhi, Yang Shengjiong, Wang Jixiang, Huang Tijun, Lei Qin, Tan Jihua
College of Resources and Environment, University of Chinese Academy of Sciences Yuquan Road 19A Beijing 100049 China
Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology No. 13, Yanta Road Xi'an Shaanxi 710055 China.
RSC Adv. 2019 Mar 6;9(13):7485-7494. doi: 10.1039/c9ra00596j. eCollection 2019 Mar 1.
Different mole ratios ( : = : ) of hybrid copper-nickel metal hexacyanoferrates (Cu Ni HCFs) were prepared to explore their morphologies, structure, electrochemical properties and the feasibility of electrochemical adsorption of cobalt ions. Cyclic voltammetry (CV), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that the : ratio of Cu Ni HCF nanoparticles can be easily controlled as designed using a wet chemical coprecipitation method. The crystallite size and formal potential of Cu Ni HCF films showed an insignificant change when 0 ≤ : < 0.3. Given the shape of the CV curves, this might be due to Cu ions being inserted into the NiHCF framework as countercations to maintain the electrical neutrality of the structure. On the other hand, crystallite size depended linearly on the : ratio when : > 0.3. This is because Cu tended to replace Ni sites in the lattice structure at higher molar ratios of : . Cu Ni HCF films inherited good electrochemical reversibility from the CuHCFs, in view of the cyclic voltammograms; in particular, CuNiHCF exhibited long-term cycling stability and high surface coverage. The adsorption of Co fitted the Langmuir isotherm model well, and the kinetic data can be well described by a pseudo-second order model, which may imply that Co adsorption is controlled by chemical adsorption. The diffusion process was dominated by both intraparticle diffusion and surface diffusion.
制备了不同摩尔比( : = : )的杂化铜镍铁氰化金属配合物(Cu Ni HCFs),以探究其形态、结构、电化学性质以及钴离子电化学吸附的可行性。循环伏安法(CV)、场发射扫描电子显微镜(FE-SEM)、傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)表明,使用湿化学共沉淀法可轻松按设计控制Cu Ni HCF纳米颗粒的 : 比例。当0≤ : <0.3时,Cu Ni HCF薄膜的微晶尺寸和形式电位变化不明显。鉴于CV曲线的形状,这可能是由于Cu离子作为抗衡阳离子插入到NiHCF骨架中以维持结构的电中性。另一方面,当 : >0.3时,微晶尺寸与 : 比例呈线性关系。这是因为在较高的 : 摩尔比下,Cu倾向于取代晶格结构中的Ni位点。从循环伏安图来看,Cu Ni HCF薄膜继承了CuHCFs良好的电化学可逆性;特别是,CuNiHCF表现出长期循环稳定性和高表面覆盖率。Co的吸附很好地拟合了Langmuir等温线模型,动力学数据可以用伪二级模型很好地描述,这可能意味着Co的吸附受化学吸附控制。扩散过程由颗粒内扩散和表面扩散共同主导。
Int J Biol Macromol. 2015-11
Environ Sci Pollut Res Int. 2020-6-12
Ecotoxicol Environ Saf. 2018-9-6
Mikrochim Acta. 2018-6-7
J Am Chem Soc. 2015-8-24