Marine Chemistry Department, Environmental Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt.
Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
Int J Biol Macromol. 2020 Jun 1;152:554-566. doi: 10.1016/j.ijbiomac.2020.02.254. Epub 2020 Feb 24.
A novel mesoporous chitin blended MoO-Montmorillonite nanocomposite was prepared through three-steps synthesis. First, chitin was extracted from prawn shell then MoO-MMT was prepared, and lastly, chitin was blended with MoO-MMT. Chitin-MoO-MMT was applied for the removal of Cu(II) and Pb(II) from wastewater. XRD characterization revealed MoO solubility in MMT interlayers, SEM showed a nanocomposite formation with sharp nanorods like-structure and length ranging from 60 to 77.7 nm. FTIR exhibited fundamental changes in the surface functional groups after adsorption. XPS analysis before and after adsorption showed the domination of chemical bonding with N and O. N adsorption-desorption isotherm displayed H-type hysteresis loop and a pore size diameter of 10.67 nm confirming the mesoporous nature. Adsorption efficiency was studied as a function of pH, time, metal concentration and adsorbent mass. Adsorption capacity (Q) values were 19.03 and 15.92 mg.g for Cu(II) and Pb(II) respectively. The metal surface coverage mapping was 1.87 × 10^ and 4.34 × 10^ atoms/m for Cu(II) and Pb(II) respectively. Adsorption followed Langmuir isotherm and pseudo-second-order (PSO) kinetics suggesting a monolayer chemisorption domination. Intraparticle diffusion (IPD) model showed a boundary layer control. Thermodynamically, the adsorption was spontaneous and endothermic with activation energies 25.94 and 29.37 kJ.mol for Cu(II) and Pb(II) respectively.
一种新型的介孔甲壳素混合 MoO-Montmorillonite 纳米复合材料通过三步合成法制备。首先,从虾壳中提取甲壳素,然后制备 MoO-MMT,最后将甲壳素与 MoO-MMT 混合。甲壳素-MoO-MMT 被应用于从废水中去除 Cu(II)和 Pb(II)。XRD 特征表明 MoO 溶解在 MMT 层间,SEM 显示纳米复合材料的形成具有尖锐的纳米棒状结构,长度范围为 60 至 77.7nm。FTIR 显示吸附后表面官能团发生了根本变化。吸附前后的 XPS 分析表明存在 N 和 O 的化学键合。N 吸附-解吸等温线显示出 H 型滞后环和 10.67nm 的孔径,证实了介孔性质。吸附效率作为 pH、时间、金属浓度和吸附剂质量的函数进行了研究。Cu(II)和 Pb(II)的吸附容量(Q)值分别为 19.03 和 15.92mg.g。金属表面覆盖率映射分别为 1.87×10^和 4.34×10^原子/m 用于 Cu(II)和 Pb(II)。吸附遵循 Langmuir 等温线和伪二阶 (PSO) 动力学,表明单层化学吸附占主导地位。内扩散 (IPD) 模型显示边界层控制。热力学上,吸附是自发的和吸热的,Cu(II)和 Pb(II)的活化能分别为 25.94 和 29.37kJ.mol。