Yang Siyeong, Kim Minjin, Park Sanghyeok, Kim Hongki, Jeong Jinyoung, Jung Juyeon, Lim Eun-Kyung, Seo Min-Kyo, Kim Bongsoo, Kang Taejoon
Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Korea
Department of Physics, KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141 Korea.
RSC Adv. 2019 Apr 29;9(23):13007-13015. doi: 10.1039/c9ra01813a. eCollection 2019 Apr 25.
Practical application of surface-enhanced Raman scattering (SERS)-active platforms requires that they provide highly uniform and reproducible SERS signals. Moreover, to achieve highly stable and consistent SERS signals, it is important to control the nanostructured gaps of SERS-active platforms precisely. Herein, we report the synthesis of gap-controllable nanoporous plates and their application to efficient, robust, uniform, and reproducible SERS-active platforms. To prepare well-defined nanoporous plates, ultraflat, ultraclean, and single-crystalline Au nanoplates were employed. The Au nanoplates were transformed to AuAg alloy nanoplates by reacting with AgI in the vapor phase. The Ag in the alloy nanoplates was then chemically etched, thus forming well-defined SERS-active nanoporous plates. For the precise control of gaps in the nanoporous plates, we investigated the alloy forming mechanism based on X-ray photoelectron spectroscopy and transmission electron microscopy analyses. According to the mechanism, the composition of Ag was tunable by varying the reaction temperature, thus making the nanostructured gaps of the porous plates adjustable. We optimized the nanoporous plates to exhibit the strongest SERS signals as well as excellent uniformity and reproducibility. The computational simulation also supports the experimental SERS signals of nanoporous plates. Furthermore, we successfully performed label-free detection of a biocide mixture (5-chloro-2-methyl-4-isothiazolin-3-one/2-methyl-4-isothiazol-3-one) up to 10 ppm using Au nanoporous plates. The adoption of single-crystalline Au nanoplates, the novel synthesis method for alloy nanoplates in the vapor phase, and the investigation of alloy forming mechanisms synergistically contributed to the formation of well-defined nanoporous plates. We anticipate that the nanoporous plates will be useful for the practical sensing of trace chemical and biological analytes.
表面增强拉曼散射(SERS)活性平台的实际应用要求其提供高度均匀且可重复的SERS信号。此外,为了实现高度稳定和一致的SERS信号,精确控制SERS活性平台的纳米结构间隙非常重要。在此,我们报告了可控制间隙的纳米多孔板的合成及其在高效、稳健、均匀和可重复的SERS活性平台中的应用。为了制备明确的纳米多孔板,采用了超平坦、超清洁的单晶金纳米板。通过与气相中的AgI反应,将金纳米板转变为AuAg合金纳米板。然后对合金纳米板中的银进行化学蚀刻,从而形成明确的SERS活性纳米多孔板。为了精确控制纳米多孔板中的间隙,我们基于X射线光电子能谱和透射电子显微镜分析研究了合金形成机制。根据该机制,通过改变反应温度可以调节银的组成,从而使多孔板的纳米结构间隙可调。我们对纳米多孔板进行了优化,以展现最强的SERS信号以及出色的均匀性和可重复性。计算模拟也支持纳米多孔板的实验SERS信号。此外,我们使用金纳米多孔板成功地对高达10 ppm的杀菌剂混合物(5-氯-2-甲基-4-异噻唑啉-3-酮/2-甲基-4-异噻唑啉-3-酮)进行了无标记检测。单晶金纳米板的采用、气相中合金纳米板的新型合成方法以及合金形成机制的研究协同促成了明确纳米多孔板的形成。我们预计纳米多孔板将有助于痕量化学和生物分析物的实际传感。