Vallejo Carlos Andrés, Galeano Luis Alejandro, Trujillano Raquel, Vicente Miguel Ángel, Gil Antonio
Grupo de Investigación en Materiales Funcionales y Catálisis GIMFC, Departamento de Química, Universidad de Nariño Calle 18, Cra. 50 Campus Torobajo 520002 Pasto Colombia
GIR-QUESCAT, Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad de Salamanca Plaza de la Merced, s/n 37008 Salamanca Spain
RSC Adv. 2020 Nov 6;10(66):40450-40460. doi: 10.1039/d0ra08948f. eCollection 2020 Nov 2.
The modification of bentonite with Al-Fe species from different concentrated precursors at both stages: (i) the preparation of the (Al/Fe)-mixed pillaring solution and (ii) intercalation itself, was studied at lab scale. The final solids were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), Cationic Exchange Capacity (CEC), textural analyses by nitrogen adsorption-desorption at 77 K, and hydrogen-temperature programmed reduction (H-TPR). Finally, the modified clays were assessed as active materials in the Catalytic Wet Peroxide Oxidation (CWPO) of phenol under very mild conditions through 1.0 h of reaction: = 25.0 °C ± 0.1 °C, pH = 3.7, ambient pressure (76 kPa), and 0.5 g catalyst per dm. Metal hydrolysis by the dissolution of elemental aluminium (final Total Metal Concentration TMC = 4.62 mol dm) achieved the best results, decreasing the volume of solution per mass unit of clay required to successfully expand the layered starting mineral by a factor of close to 75, in comparison with the widespread conventional preparation using highly diluted Al-based pillaring solutions. Even in the absence of any solvent for the clay dispersion, the intercalating/pillaring method was shown to be favourable, as a novel strategy promoting the process intensification and subsequent preparation of Al/Fe- and other Al-based pillared clays at larger scales. The best catalyst prepared from concentrated precursors exhibited 79.1% phenol conversion, 19.3% TOC mineralization, and pretty low iron leaching (0.037 mg Fe dm; ∼0.12% w/w) in such a short catalytic assessment; all these results were quite comparable or even exceeded those exhibited by the catalyst prepared from dilute precursors.
(i)制备(铝/铁)混合柱撑溶液,以及(ii)插层本身,这是在实验室规模下进行的。通过X射线荧光(XRF)、X射线衍射(XRD)、阳离子交换容量(CEC)、77K下氮气吸附-脱附的结构分析以及氢气程序升温还原(H-TPR)对最终固体进行了表征。最后,在非常温和的条件下通过1.0小时的反应,将改性粘土评估为苯酚催化湿式过氧化氢氧化(CWPO)中的活性材料:温度=25.0℃±0.1℃,pH=3.7,常压(76kPa),每立方分米0.5克催化剂。与使用高度稀释的铝基柱撑溶液的广泛传统制备方法相比,通过元素铝溶解实现的金属水解(最终总金属浓度TMC=4.62摩尔/立方分米)取得了最佳结果,成功膨胀层状起始矿物所需的每质量单位粘土的溶液体积减少了近75倍。即使在没有任何用于粘土分散的溶剂的情况下,插层/柱撑方法也被证明是有利的,作为一种促进过程强化以及随后大规模制备铝/铁和其他铝基柱撑粘土的新策略。由浓缩前驱体制备的最佳催化剂在如此短的催化评估中表现出79.1%的苯酚转化率、19.3%的总有机碳矿化率以及相当低的铁浸出率(0.037毫克铁/立方分米;约0.12%重量/重量);所有这些结果与由稀释前驱体制备的催化剂所表现出的结果相当,甚至超过了这些结果。