Suppr超能文献

DNA与单层材料相互作用时通过纳米孔的不稳定性和易位。

Instability and translocation through nanopores of DNA interacting with single-layer materials.

作者信息

Alshehri Mansoor H, Duraihem Faisal Z, Aba Oud Mohammed A

机构信息

Department of Mathematics, College of Science, King Saud University Riyadh-11451 Saudi Arabia

Department of Mathematics and Statistics, Al Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Kingdom of Saudi Arabia.

出版信息

RSC Adv. 2020 Oct 7;10(61):36962-36970. doi: 10.1039/d0ra06359b.

Abstract

In this study, we use classical applied mathematical modelling to employ the 6-12 Lennard-Jones potential function along with the continuous approximation to investigate the interaction energies between a double-stranded deoxyribonucleic acid (dsDNA) molecule and two-dimensional nanomaterials, namely graphene (GRA), hexagonal boron nitride (h-BN), molybdenum disulphide (MoS), and tungsten disulphide (WS). Assuming that the dsDNA molecule has a perpendicular distance above the nano-sheet surface, we calculated the molecular interaction energy and determined the relation between the location of the minimum energy and . We also investigated the interaction of a dsDNA molecule with the surface of each nano-sheet in the presence of a circular hole simulating a nanopore. The radius of the nanopore that results in the minimum energy was determined. Our results show that the adsorption energies of the dsDNA molecule with GRA, h-BN, MoS, and WS nano-sheets corresponding to the perpendicular distance = 20 Å are approximately 70, 82, 28, and 26 (kcal mol), respectively, and we observed that the dsDNA molecule moves through nanopores of radii greater than 12.2 Å.

摘要

在本研究中,我们使用经典的应用数学模型,采用6 - 12 Lennard - Jones势函数并结合连续近似法,来研究双链脱氧核糖核酸(dsDNA)分子与二维纳米材料(即石墨烯(GRA)、六方氮化硼(h - BN)、二硫化钼(MoS)和二硫化钨(WS))之间的相互作用能。假设dsDNA分子在纳米片表面上方有垂直距离 ,我们计算了分子相互作用能,并确定了最小能量位置与 的关系。我们还研究了在存在模拟纳米孔的圆形孔的情况下,dsDNA分子与每个纳米片表面的相互作用。确定了导致最小能量的纳米孔半径。我们的结果表明,对应于垂直距离 = 20 Å时,dsDNA分子与GRA、h - BN、MoS和WS纳米片的吸附能分别约为70、82、28和26(千卡/摩尔),并且我们观察到dsDNA分子穿过半径大于12.2 Å的纳米孔。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d04/9057072/fd8899268e98/d0ra06359b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验