Suppr超能文献

利用农业废弃物和粉煤灰制备的异质生物炭去除焦化废水中的重金属

Heterogeneous biochars from agriculture residues and coal fly ash for the removal of heavy metals from coking wastewater.

作者信息

Gao Lihui, Goldfarb Jillian L

机构信息

School of Chemical Engineering and Technology, China University of Mining and Technology Xuzhou 221116 People's Republic of China

Department of Mechanical Engineering, Division of Materials Science and Engineering, Boston University 110 Cummington Mall Boston MA 02215 USA.

出版信息

RSC Adv. 2019 May 21;9(28):16018-16027. doi: 10.1039/c9ra02459j. eCollection 2019 May 20.

Abstract

While we have started down the path towards a global transition to a green economy, as with most things we began with the "low-hanging fruit," such that increasingly difficult material and chemical conversions remain. Coking is one such example; it is unlikely that steel production will transition away from using coking coal anytime in the near future, such that coking wastewater remains a global environmental challenge. However, we can develop greener methods and materials to treat such waste. The present work demonstrates how wheat straw, an abundant agricultural residue, can be co-pyrolyzed and co-activated with coal fly ash to produce a high surface area biochar. Coal fly ash has previously been shown to promote devolatilization and deoxygenation of pyrolyzed biofuels. This work shows how coal fly ash increases microporosity as well as aromaticity of the surface functional groups, while decreasing carbonyl but preserving or only slightly decreasing ketones and carboxylic acids. CO-activation of 5 and 10 wt% fly ash with wheat straw blends yields heterogeneous biochars with adsorption capacities upwards of 170 mg g , with 5 wt% blends showing higher capacity and adsorption uptake rates than the 0 or 10 wt% blends. The adsorption of the four heavy metals ions (Ni, Co, Zn, and Mn) was chemical in nature, with cobalt preferentially adsorbing to the char surface. The overall adsorption rate is limited by an initial rapid uptake to fill available surface adsorption sites.

摘要

虽然我们已经踏上了向全球绿色经济转型的道路,但与大多数事情一样,我们从“低垂的果实”开始,因此仍存在日益困难的物质和化学转化问题。焦化就是这样一个例子;在不久的将来,钢铁生产不太可能不再使用焦煤,因此焦化废水仍然是一个全球性的环境挑战。然而,我们可以开发更环保的方法和材料来处理此类废物。目前的工作展示了如何将丰富的农业残留物小麦秸秆与粉煤灰进行共热解和共活化,以生产高比表面积生物炭。粉煤灰此前已被证明可促进热解生物燃料的脱挥发分和脱氧。这项工作展示了粉煤灰如何增加微孔率以及表面官能团的芳香性,同时减少羰基但保留或仅略微减少酮和羧酸。用5%和10%重量的粉煤灰与小麦秸秆混合物进行共活化,可产生吸附容量超过170毫克/克的非均质生物炭,5%重量的混合物显示出比0%或10%重量的混合物更高的容量和吸附速率。四种重金属离子(镍、钴、锌和锰)的吸附本质上是化学吸附,其中钴优先吸附在炭表面。总体吸附速率受限于最初快速的吸附以填充可用的表面吸附位点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1112/9064278/1e3bf3025d4e/c9ra02459j-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验