Suppr超能文献

在缺乏个体患者数据的情况下丰富网络荟萃分析方法的比较

A comparison of methods for enriching network meta-analyses in the absence of individual patient data.

作者信息

Proctor Tanja, Zimmermann Samuel, Seide Svenja, Kieser Meinhard

机构信息

Institute of Medical Biometry, University of Heidelberg, Heidelberg, Germany.

出版信息

Res Synth Methods. 2022 Nov;13(6):745-759. doi: 10.1002/jrsm.1568. Epub 2022 May 19.

Abstract

During drug development, a biomarker is sometimes identified as separating a patient population into those with more and those with less benefit from evaluated treatments. Consequently, later studies might be targeted, while earlier ones are performed in mixed patient populations. This poses a challenge in evidence synthesis, especially if only aggregated data are available. Starting from this scenario, we investigate three commonly used network meta-analytic estimation methods, the naive estimation approach, the stand-alone analysis, and the network meta-regression. Additionally, we adapt and modify two methods, which are used in evidence synthesis to combine randomized controlled trials with observational studies, the enrichment-through-weighting approach, and the informative prior estimation. We evaluate all five methods in a simulation study with 32 scenarios using bias, root-mean-squared-error, coverage, precision, and power. Additionally, we revisit a clinical data set to exemplify and discuss the application. In the simulation study, none of the methods was observed to be clearly favorable over all investigated scenarios. However, the stand-alone analysis and the naive estimation performed comparably or worse than the other methods in all evaluated performance measures and simulation scenarios and are therefore not recommended. While substantial between-trial heterogeneity is challenging for all estimation approaches, the performance of the network meta-regression, the enriching-through weighting approach and the informative prior approach was dependent on the simulation scenario and the performance measure of interest. Furthermore, as these estimation methods are drawing slightly different assumptions, some of which require the presence of additional information for estimation, we recommend sensitivity-analyses wherever possible.

摘要

在药物研发过程中,有时会确定一种生物标志物,用于将患者群体分为从评估治疗中获益较多和较少的两类人群。因此,后续研究可能会有针对性,而早期研究则是在混合患者群体中进行。这给证据综合带来了挑战,尤其是在只有汇总数据可用的情况下。从这种情况出发,我们研究了三种常用的网络荟萃分析估计方法:朴素估计方法、独立分析和网络荟萃回归。此外,我们对两种用于证据综合以将随机对照试验与观察性研究相结合的方法进行了调整和修改,即加权富集法和信息先验估计法。我们在一项包含32种情景的模拟研究中,使用偏差、均方根误差、覆盖率、精度和效能对这五种方法进行了评估。此外,我们重新审视了一个临床数据集,以举例说明并讨论其应用。在模拟研究中,没有一种方法在所有研究情景中都明显优于其他方法。然而,独立分析和朴素估计在所有评估的性能指标和模拟情景中的表现与其他方法相当或更差,因此不建议使用。虽然试验间的显著异质性对所有估计方法都具有挑战性,但网络荟萃回归、加权富集法和信息先验法的性能取决于模拟情景和感兴趣的性能指标。此外,由于这些估计方法所做的假设略有不同,其中一些假设需要额外的信息进行估计,我们建议尽可能进行敏感性分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验