Shao Tianyi, Wang Xiaonong, Dong Hanxiao, Liu Shengkun, Duan Delong, Li Yaping, Song Pin, Jiang Huijun, Hou Zhonghuai, Gao Chao, Xiong Yujie
School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd., Hefei, Anhui, 230031, P. R. China.
Adv Mater. 2022 Jul;34(28):e2202367. doi: 10.1002/adma.202202367. Epub 2022 Jun 6.
Light utilization largely governs the performance of CO photoconversion, whereas most of the materials that are implemented in such an application are restricted in a narrow spectral absorption range. Plasmonic metamaterials with a designable regular pattern and facile tunability are excellent candidates for maximizing light absorption to generate substantial hot electrons and thermal energy. Herein, a concept of coupling a Au-based stacked plasmonic metamaterial with single Cu atoms in alloy, as light absorber and catalytic sites, respectively, is reported for gas-phase light-driven catalytic CO hydrogenation. The metamaterial structure works in a broad spectral range (370-1040 nm) to generate high surface temperature for photothermal catalysis, and also induces strong localized electric field in favor of transfer of hot electrons and reduced energy barrier in CO hydrogenation. This work unravels the significant role of a strong localized electric field in photothermal catalysis and demonstrates a scalable fabrication approach to light-driven catalysts based on plasmonic metamaterials.
光的利用在很大程度上决定了CO光催化转化的性能,然而,此类应用中所使用的大多数材料的光谱吸收范围都很窄。具有可设计规则图案和易于调节性的等离子体超材料是最大化光吸收以产生大量热电子和热能的极佳候选材料。在此,报道了一种将基于金的堆叠等离子体超材料与合金中的单个铜原子分别作为光吸收体和催化位点进行耦合的概念,用于气相光驱动催化CO加氢反应。该超材料结构在宽光谱范围(370 - 1040 nm)内起作用,以产生用于光热催化的高表面温度,并且还会诱导强局域电场,有利于热电子转移并降低CO加氢反应中的能垒。这项工作揭示了强局域电场在光热催化中的重要作用,并展示了一种基于等离子体超材料的光驱动催化剂的可扩展制造方法。