Suppr超能文献

用于模拟浮游植物门/纲和属水平以及浮游动物属水平的分层深度学习模型。

Hierarchical deep learning model to simulate phytoplankton at phylum/class and genus levels and zooplankton at the genus level.

机构信息

Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea.

Center for Environmental Data Strategy, Korea Environment Institute, Sejong 30147, Republic of Korea.

出版信息

Water Res. 2022 Jun 30;218:118494. doi: 10.1016/j.watres.2022.118494. Epub 2022 Apr 23.

Abstract

Harmful algal blooms (HABs) have become a global issue, affecting public health and water industries in numerous countries. Because funds for monitoring HABs are limited, model development may be an alternative approach for understanding and managing HABs. Continuous monitoring based on grab sampling is time-consuming, costly, and labor-intensive. However, improving simulation performance remains a major challenge in modeling, and current methods are limited to simulating phytoplankton (e.g., Microcystis sp., Anabaena sp., Aulacoseira sp., Cyclotella sp., Pediastrum sp., and Eudorina sp.) and zooplankton (e.g., Cyclotella sp., Pediastrum sp., and Eudorina sp.) at the genus level. The traditional modeling approach is limited for evaluating the interactions between phytoplankton and zooplankton. Recently, deep learning (DL) models have been proposed for solving modeling problems because of their large data handling capabilities and model structure flexibilities. In this study, we evaluated the applicability of DL for simulating phytoplankton at the phylum/class and genus levels and zooplankton at the genus level. Our work was an explicit representation of the taxonomic and ecological hierarchy of the DL model structure. The prerequisite for this model design was the data collection at two taxonomic and hierarchical levels. Our model consisted of hierarchical DL with classification transformer (TF) and regression TF models. These DL models were hierarchically connected; the output of the phylum/class level model was transferred to the genus level simulation model, and the output of the genus level model was fed into the zooplankton simulation model. The classification TF model determined the phytoplankton occurrence initiation date, whereas the regression TF model quantified the cell concentration of plankton. The hierarchical DL showed potential to simulate phytoplankton at the phylum/class and genus levels by producing average R and root mean standard error values of 0.42 and 0.83 [log(cells mL)], respectively. All simulated plankton results closely matched the measured concentrations. Particularly, the simulated cyanobacteria showed good agreement with the measured cell concentration, with an R value of 0.72. In addition, our simulated result showed good agreement in peak concentration compared to observations. However, a limitation remained in following the temporal variation of Tintinnopsis sp. and Bosmia sp. Using an importance map from the TF model, water temperature, total phosphorus, and total nitrogen were identified as significant variables influencing phytoplankton and zooplankton blooms. Overall, our study demonstrated that DL can be used for modeling HABs at the phylum/class and genus levels.

摘要

有害藻类水华(HAB)已成为全球性问题,影响着许多国家的公众健康和水产业。由于监测 HAB 的资金有限,因此模型开发可能是一种理解和管理 HAB 的替代方法。基于抓样的连续监测既耗时、昂贵又耗费大量人力。然而,提高模拟性能仍然是建模中的主要挑战,目前的方法仅限于模拟浮游植物(例如微囊藻属、鱼腥藻属、颤藻属、舟形藻属、蹄形藻属和尾丝藻属)和浮游动物(例如舟形藻属、蹄形藻属和尾丝藻属)属级水平。传统的建模方法在评估浮游植物和浮游动物之间的相互作用方面受到限制。最近,由于深度学习(DL)模型具有大数据处理能力和模型结构灵活性,因此已被提出用于解决建模问题。在这项研究中,我们评估了 DL 用于模拟属级浮游植物和属级浮游动物的适用性。我们的工作明确体现了 DL 模型结构的分类和生态层次。这种模型设计的前提是在两个分类和层次级别收集数据。我们的模型由具有分类转换器(TF)和回归 TF 模型的分层 DL 组成。这些 DL 模型是分层连接的;门/纲水平模型的输出被转移到属级模拟模型,属级模型的输出被输入到浮游动物模拟模型。分类 TF 模型确定浮游植物出现的起始日期,而回归 TF 模型量化浮游生物的细胞浓度。分层 DL 通过产生平均 R 和根均方标准误差值分别为 0.42 和 0.83 [log(细胞 mL)],显示出模拟门/纲和属级浮游植物的潜力。所有模拟浮游生物的结果均与实测浓度非常吻合。特别是,模拟的蓝藻与实测细胞浓度具有很好的一致性,R 值为 0.72。此外,与观测结果相比,我们的模拟结果在峰值浓度方面也具有很好的一致性。但是,在跟踪钟形藻属和博斯米亚藻属的时间变化方面仍然存在局限性。使用 TF 模型的重要性图,可以确定水温、总磷和总氮是影响浮游植物和浮游动物水华的重要变量。总体而言,我们的研究表明,DL 可用于模拟门/纲和属级别的 HAB。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验