Suppr超能文献

基于产出的地方性感染畜群无感染评估:贝叶斯隐马尔可夫模型的应用。

Output-based assessment of herd-level freedom from infection in endemic situations: Application of a Bayesian Hidden Markov model.

机构信息

Department of Population Health Sciences, Unit Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.

INRAE, Oniris, BIOEPAR, 44300 Nantes, France.

出版信息

Prev Vet Med. 2022 Jul;204:105662. doi: 10.1016/j.prevetmed.2022.105662. Epub 2022 Apr 30.

Abstract

Countries have implemented control programmes (CPs) for cattle diseases such as bovine viral diarrhoea virus (BVDV) that are tailored to each country-specific situation. Practical methods are needed to assess the output of these CPs in terms of the confidence of freedom from infection that is achieved. As part of the STOC free project, a Bayesian Hidden Markov model was developed, called STOC free model, to estimate the probability of infection at herd-level. In the current study, the STOC free model was applied to BVDV field data in four study regions, from CPs based on ear notch samples. The aim of this study was to estimate the probability of herd-level freedom from BVDV in regions that are not (yet) free. We additionally evaluated the sensitivity of the parameter estimates and predicted probabilities of freedom to the prior distributions for the different model parameters. First, default priors were used in the model to enable comparison of model outputs between study regions. Thereafter, country-specific priors based on expert opinion or historical data were used in the model, to study the influence of the priors on the results and to obtain country-specific estimates. The STOC free model calculates a posterior value for the model parameters (e.g. herd-level test sensitivity and specificity, probability of introduction of infection) and a predicted probability of infection. The probability of freedom from infection was computed as one minus the probability of infection. For dairy herds that were considered free from infection within their own CP, the predicted probabilities of freedom were very high for all study regions ranging from 0.98 to 1.00, regardless of the use of default or country-specific priors. The priors did have more influence on two of the model parameters, herd-level sensitivity and the probability of remaining infected, due to the low prevalence and incidence of BVDV in the study regions. The advantage of STOC free model compared to scenario tree modelling, the reference method, is that actual data from the CP can be used and estimates are easily updated when new data becomes available.

摘要

各国针对牛病毒性腹泻病毒(BVDV)等牛病实施了具有本国特色的控制计划(CP)。需要切实可行的方法来评估这些 CP 的产出,以衡量其实现无感染信心的程度。作为 STOC free 项目的一部分,开发了一种称为 STOC free 模型的贝叶斯隐马尔可夫模型,用于估计群体层面的感染概率。在当前的研究中,将 STOC free 模型应用于基于耳标样本的 CP 下四个研究区域的 BVDV 现场数据。本研究旨在估计尚未无 BVDV 的区域达到群体层面无 BVDV 的概率。我们还评估了参数估计和预测无 BVDV 概率对不同模型参数先验分布的敏感性。首先,模型使用默认先验分布以实现研究区域之间的模型输出比较。然后,模型中使用基于专家意见或历史数据的国家特定先验分布,以研究先验对结果的影响并获得国家特定的估计。STOC free 模型计算模型参数(例如群体层面检测敏感性和特异性、感染引入概率)的后验值和感染概率的预测值。感染的可能性为 1 减去感染的可能性。对于被认为在其 CP 内无感染的奶牛群体,预测的无感染概率在所有研究区域均非常高,范围从 0.98 到 1.00,无论使用默认还是国家特定先验分布。由于研究区域中 BVDV 的低流行率和发病率,先验对两个模型参数(群体层面敏感性和剩余感染概率)的影响更大。与参考方法情景树建模相比,STOC free 模型的优势在于可以使用 CP 的实际数据,并且在新数据可用时可以轻松更新估计值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验