Suppr超能文献

计算分子水平预测杂环化合物-金属表面界面行为。

Computational molecular-level prediction of heterocyclic compound-metal surface interfacial behavior.

机构信息

Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

出版信息

J Colloid Interface Sci. 2022 Sep 15;622:452-468. doi: 10.1016/j.jcis.2022.04.106. Epub 2022 Apr 21.

Abstract

It is difficult to comprehensively understand the interfacial mechanism (IM) of the adsorption of corrosion inhibitors (CIs) on metal surfaces solely through experiments and electronic structure parameters of isolated molecules. To better understand the molecular-level IM of CIs, a combination of atomistic simulations and first-principles calculations was used to obtain reliable information on the adsorption nature and intermolecular interactions during the actual interfacial behavior. The IM and property changes of two synthesized heterocyclic sustainable-green CIs, namely 4-{[(5-nitrofuran-2-yl)methylene]amino}-5-propyl-4H-1,2,4-triazole-3-thiol (NFPT and 4-{[(5-nitrofuran-2-yl)methylene]amino}-4H-1,2,4-triazole-3-thiol (NFT), were investigated on the Fe(110) surface using first-principles density functional theory (DFT) calculations and molecular dynamics (MD) simulations. The NFPT was preferentially adsorbed through a parallel configuration with a high interaction energy (-706.12 kJ·mol) compared to NFT, owing to stronger chemical bonds via S, N, and O atoms with the Fe surface. Additionally, the adsorbed NFPT film effectively inhibited Fe surface corrosion owing to the small diffusion coefficient of corrosive particles in the presence of NFPT. Subsequently, the anti-corrosion performance of both CIs was validated through electrochemical methods, surface analysis, and adsorption isotherm models. The observations suggest that the combination of modern computational perspectives could efficiently design and select the best CIs before their laboratory synthesis.

摘要

仅通过实验和孤立分子的电子结构参数,很难全面了解腐蚀抑制剂(CIs)在金属表面吸附的界面机制(IM)。为了更好地理解 CIs 的分子水平 IM,采用原子模拟和第一性原理计算相结合的方法,获得了有关实际界面行为中吸附性质和分子间相互作用的可靠信息。通过使用第一性原理密度泛函理论(DFT)计算和分子动力学(MD)模拟,研究了两种合成的杂环可持续绿色 CIs,即 4-[[(5-硝基呋喃-2-基)亚甲基]氨基]-5-丙基-4H-1,2,4-三唑-3-硫醇(NFPT)和 4-[[(5-硝基呋喃-2-基)亚甲基]氨基]-4H-1,2,4-三唑-3-硫醇(NFT)在 Fe(110)表面上的 IM 和性质变化。与 NFT 相比,NFPT 通过平行配置优先吸附,具有较高的相互作用能(-706.12 kJ·mol),这是由于 S、N 和 O 原子与 Fe 表面形成更强的化学键。此外,由于 NFPT 存在时腐蚀性颗粒的扩散系数较小,吸附的 NFPT 膜有效地抑制了 Fe 表面的腐蚀。随后,通过电化学方法、表面分析和吸附等温线模型验证了两种 CIs 的防腐性能。这些观察结果表明,现代计算观点的结合可以在实验室合成之前有效地设计和选择最佳的 CIs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验