Suppr超能文献

用于有机太阳能电池的高性能非稠合非富勒烯受体的计算演化

Computational evolution of high-performing unfused non-fullerene acceptors for organic solar cells.

作者信息

Greenstein Brianna L, Hiener Danielle C, Hutchison Geoffrey R

机构信息

Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA.

出版信息

J Chem Phys. 2022 May 7;156(17):174107. doi: 10.1063/5.0087299.

Abstract

Materials optimization for organic solar cells (OSCs) is a highly active field, with many approaches using empirical experimental synthesis, computational brute force to screen a subset of chemical space, or generative machine learning methods that often require significant training sets. While these methods may find high-performing materials, they can be inefficient and time-consuming. Genetic algorithms (GAs) are an alternative approach, allowing for the "virtual synthesis" of molecules and a prediction of their "fitness" for some property, with new candidates suggested based on good characteristics of previously generated molecules. In this work, a GA is used to discover high-performing unfused non-fullerene acceptors (NFAs) based on an empirical prediction of power conversion efficiency (PCE) and provides design rules for future work. The electron-withdrawing/donating strength, as well as the sequence and symmetry, of those units are examined. The utilization of a GA over a brute-force approach resulted in speedups up to 1.8 × 10. New types of units, not frequently seen in OSCs, are suggested, and in total 5426 NFAs are discovered with the GA. Of these, 1087 NFAs are predicted to have a PCE greater than 18%, which is roughly the current record efficiency. While the symmetry of the sequence showed no correlation with PCE, analysis of the sequence arrangement revealed that higher performance can be achieved with a donor core and acceptor end groups. Future NFA designs should consider this strategy as an alternative to the current A-D-A'-D-A architecture.

摘要

有机太阳能电池(OSC)的材料优化是一个非常活跃的领域,有许多方法,包括使用经验性实验合成、通过计算蛮力筛选化学空间的一个子集,或者采用通常需要大量训练集的生成式机器学习方法。虽然这些方法可能会找到高性能的材料,但它们可能效率低下且耗时。遗传算法(GA)是一种替代方法,它允许对分子进行“虚拟合成”,并预测其对某些性质的“适应性”,根据先前生成分子的良好特性提出新的候选分子。在这项工作中,基于功率转换效率(PCE)的经验预测,使用遗传算法来发现高性能的非稠合非富勒烯受体(NFA),并为未来的工作提供设计规则。研究了这些单元的吸电子/供电子强度以及序列和对称性。与蛮力方法相比,使用遗传算法实现了高达1.8×10的加速。提出了在OSC中不常见的新型单元,通过遗传算法总共发现了5426种NFA。其中,预计有1087种NFA的PCE大于18%,这大致是目前的效率记录。虽然序列的对称性与PCE没有相关性,但对序列排列的分析表明,采用供体核心和受体端基可以实现更高的性能。未来的NFA设计应将这种策略视为当前A-D-A'-D-A结构的替代方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验