Suppr超能文献

一项局部遗传相关性分析为精神疾病和物质使用表型的共享遗传结构提供了生物学见解。

A Local Genetic Correlation Analysis Provides Biological Insights Into the Shared Genetic Architecture of Psychiatric and Substance Use Phenotypes.

机构信息

Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

出版信息

Biol Psychiatry. 2022 Oct 1;92(7):583-591. doi: 10.1016/j.biopsych.2022.03.001. Epub 2022 Mar 11.

Abstract

BACKGROUND

Global genetic correlation analysis has provided valuable insight into the shared genetic basis between psychiatric and substance use disorders. However, little is known about which regions disproportionately contribute to the global correlation.

METHODS

We used Local Analysis of [co]Variant Annotation to calculate bivariate local genetic correlations across 2495 approximately equal-sized, semi-independent genomic regions for 20 psychiatric and substance use phenotypes. We performed a transcriptome-wide association study using expression weights from the prefrontal cortex to identify risk genes for each phenotype, followed by probabilistic fine-mapping to prioritize credible causal genes within each bivariate locus.

RESULTS

We detected 80 significant (p < 2.08 × 10) bivariate local genetic correlations across 61 loci. The expression effect directions for risk genes within each bivariate locus were largely consistent with the local correlation coefficients, suggesting that genetically regulated gene expression may be used in the functional interpretation of local genetic correlations. Probabilistic fine-mapping identified several genes that may drive pleiotropic mechanisms for genetically correlated phenotypes. For example, we confirmed a local genetic correlation between schizophrenia and smoking behavior at 15q25 and prioritized PSMA4 as the most credible gene candidate underlying both phenotypes.

CONCLUSIONS

Our study reveals previously unreported local bivariate genetic correlations between psychiatric and substance use phenotypes, which we fine-mapped to identify shared credible causal genes underlying genetically correlated phenotypes.

摘要

背景

全球遗传相关性分析为精神疾病和物质使用障碍之间的共同遗传基础提供了有价值的见解。然而,对于哪些区域不成比例地导致了全球相关性,我们知之甚少。

方法

我们使用了 [co]Variant Annotation 的局部分析,计算了 2495 个大约相等大小、半独立的基因组区域之间的 20 种精神疾病和物质使用表型的双变量局部遗传相关性。我们使用前额叶皮层的表达权重进行了全转录组关联研究,以确定每种表型的风险基因,然后进行概率精细映射,以在每个双变量位点内优先考虑可信的因果基因。

结果

我们在 61 个位点检测到了 80 个显著的(p < 2.08×10)双变量局部遗传相关性。每个双变量位点内风险基因的表达效应方向与局部相关系数基本一致,这表明受遗传调控的基因表达可能用于局部遗传相关性的功能解释。概率精细映射确定了几个可能驱动遗传相关表型多效机制的基因。例如,我们在 15q25 处确认了精神分裂症和吸烟行为之间的局部遗传相关性,并将 PSMA4 确定为这两种表型最可信的候选基因。

结论

我们的研究揭示了精神疾病和物质使用表型之间以前未报道的局部双变量遗传相关性,并对其进行了精细映射,以确定遗传相关表型的共享可信因果基因。

相似文献

引用本文的文献

8
The genetic landscape of substance use disorders.物质使用障碍的遗传图谱。
Mol Psychiatry. 2024 Nov;29(11):3694-3705. doi: 10.1038/s41380-024-02547-z. Epub 2024 May 29.

本文引用的文献

1
An integrated framework for local genetic correlation analysis.用于局部遗传相关性分析的综合框架。
Nat Genet. 2022 Mar;54(3):274-282. doi: 10.1038/s41588-022-01017-y. Epub 2022 Mar 14.
2
Immune dysregulation in depression: Evidence from genome-wide association.抑郁症中的免疫失调:来自全基因组关联研究的证据。
Brain Behav Immun Health. 2020 Jul 17;7:100108. doi: 10.1016/j.bbih.2020.100108. eCollection 2020 Aug.
8
The state of the science in psychiatric genomics.精神科基因组学的科学现状。
Psychol Med. 2021 Oct;51(13):2145-2147. doi: 10.1017/S0033291720004900. Epub 2021 Jan 12.
9
Pleiotropy and Cross-Disorder Genetics Among Psychiatric Disorders.精神障碍的多效性和跨疾病遗传学。
Biol Psychiatry. 2021 Jan 1;89(1):20-31. doi: 10.1016/j.biopsych.2020.09.026. Epub 2020 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验