Suppr超能文献

一种用于减少 SIRT 计划中 Tc-MAA SPECT/CT 图像中运动相关剂量误差的新工具。

A novel tool for motion-related dose inaccuracies reduction in Tc-MAA SPECT/CT images for SIRT planning.

机构信息

Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.

Nuclear Medicine Unit, IRCCS Azienda Ospedaliero, University of Bologna, 40138 Bologna, Italy.

出版信息

Phys Med. 2022 Jun;98:98-112. doi: 10.1016/j.ejmp.2022.04.017. Epub 2022 May 5.

Abstract

INTRODUCTION

In Selective Internal Radiation Therapy (SIRT), Y is administered to primary/secondary hepatic lesions. An accurate pre-treatment planning using Tc-MAA SPECT/CT allows the assessment of its feasibility and of the activity to be injected. Unfortunately, SPECT/CT suffers from patient-specific respiratory motion which causes artifacts and absorbed dose inaccuracies. In this study, a data-driven solution was developed to correct the respiratory motion.

METHODS

The tool realigns the barycenter of SPECT projection images and shifts them to obtain a fine registration with the attenuation map. The tool was validated using a modified dynamic phantom with several breathing patterns. We compared the absorbed dose distributions derived from uncorrected(D)/corrected(D) images with static ones(D) in terms of γ-passing rates, 210 Gy isodose volumes, dose-volume histograms and percentage differences of mean doses (i.e., ΔD¯ and ΔD¯, respectively). The tool was applied to twelve SIRT patients and the Bland-Altman analysis was performed on mean doses.

RESULTS

In the phantom study, the agreement between D and D was higher (γ-passing rates generally > 90%) than D and D. The isodose volumes in D were closer than D to D, with differences up to 10% and 30% respectively. A reduction from a median ΔD¯ = -19.3% to ΔD¯ = -0.9%, from ΔD¯ = -42.8% to ΔD¯ = -7.0% and from ΔD¯ = 1586% to ΔD¯ = 47.2% was observed in liver-, tumor- and lungs-like structures. The Bland-Altman analysis on patients showed variations (±50 Gy) and (±4 Gy) between D¯ and D¯ of tumor and lungs, respectively.

CONCLUSION

The proposed tool allowed the correction of Tc-MAA SPECT/CT images, improving the accuracy of the absorbed dose distribution.

摘要

介绍

在选择性内部放射疗法(SIRT)中,放射性同位素 Y 被施用于原发性/继发性肝脏病变。使用 Tc-MAA SPECT/CT 进行准确的术前规划可以评估其可行性和要注射的放射性同位素 Y 的活度。不幸的是,SPECT/CT 受到患者特定的呼吸运动的影响,这会导致伪影和吸收剂量不准确。在这项研究中,开发了一种数据驱动的解决方案来校正呼吸运动。

方法

该工具重新调整 SPECT 投影图像的质心并对其进行移位,以实现与衰减图的精细配准。该工具使用具有几种呼吸模式的改良动态体模进行了验证。我们比较了未校正(D)/校正(D)图像与静态(D)图像的吸收剂量分布,比较指标包括 γ 通过率、210 Gy 等剂量体积、剂量-体积直方图和平均剂量的百分比差异(即,ΔD¯ 和 ΔD¯,分别)。该工具应用于 12 例 SIRT 患者,对平均剂量进行 Bland-Altman 分析。

结果

在体模研究中,D 与 D 的一致性较高(γ 通过率通常>90%),优于 D 与 D。D 中的等剂量体积比 D 更接近 D,差异最大可达 10%和 30%。在肝脏、肿瘤和肺样结构中,分别观察到从中位数ΔD¯=-19.3%到ΔD¯=-0.9%、从ΔD¯=-42.8%到ΔD¯=-7.0%和从ΔD¯=1586%到ΔD¯=47.2%的减少。对患者的 Bland-Altman 分析显示,肿瘤和肺部的 D¯和 D¯ 之间存在差异(±50 Gy)和(±4 Gy)。

结论

提出的工具允许校正 Tc-MAA SPECT/CT 图像,提高吸收剂量分布的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验