Suppr超能文献

肿瘤微环境评分对乳腺癌患者的意义。

The Significance of Tumor Microenvironment Score for Breast Cancer Patients.

机构信息

Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China.

Somatic Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, Shandong 250023, China.

出版信息

Biomed Res Int. 2022 Apr 28;2022:5673810. doi: 10.1155/2022/5673810. eCollection 2022.

Abstract

PURPOSE

This study was designed to clarify the prognostic value of tumor microenvironment score and abnormal genomic alterations in TME for breast cancer patients.

METHOD

The TCGA-BRCA data were downloaded from TCGA and analyzed with R software. The results from analyses were further validated using the dataset from GSE96058, GSE124647, and GSE25066.

RESULTS

After analyzing the TCGA data and verifying it with the GEO data, we developed a TMEscore model based on the TME infiltration pattern and validated it in 3273 breast cancer patients. The results suggested that our TMEscore model has high prognostic value. TME features with the TMEscore model can help to predict breast cancer patients' response to immunotherapy and provide new strategies for breast cancer treatment. Signature 24 was first found in breast cancer. In focal SCNAs, a total of 95 amplified genes and 169 deletion genes in the TMEscore high group were found to be significantly related to the prognosis of breast cancer patients, while 61 amplified genes and 174 deletion genes in the TMEscore low group were identified. LRRC48, CFAP69, and cg25726128 were first discovered and reported to be related to the survival of breast cancer patients. We identified specific mutation signatures that correlate with TMEscore and prognosis.

CONCLUSION

TMEscore model has high predictive value regarding prognosis and patients' response to immunotherapy. Signature 24 was first found in breast cancer. Specific mutation signatures that correlate with TMEscore and prognosis might be used for providing additional indicators for disease evaluation.

摘要

目的

本研究旨在阐明肿瘤微环境评分和 TME 中的异常基因组改变对乳腺癌患者的预后价值。

方法

从 TCGA 下载 TCGA-BRCA 数据,并使用 R 软件进行分析。使用 GSE96058、GSE124647 和 GSE25066 数据集进一步验证分析结果。

结果

通过分析 TCGA 数据并结合 GEO 数据验证,我们基于 TME 浸润模式开发了一个 TMEscore 模型,并在 3273 例乳腺癌患者中进行了验证。结果表明,我们的 TMEscore 模型具有较高的预后价值。TME 特征与 TMEscore 模型相结合,有助于预测乳腺癌患者对免疫治疗的反应,并为乳腺癌治疗提供新策略。Signature 24 首先在乳腺癌中发现。在局灶性 SCNAs 中,TMEscore 高组中有 95 个扩增基因和 169 个缺失基因与乳腺癌患者的预后显著相关,而 TMEscore 低组中有 61 个扩增基因和 174 个缺失基因。LRRC48、CFAP69 和 cg25726128 是首次发现并报道与乳腺癌患者生存相关的基因。我们确定了与 TMEscore 和预后相关的特定突变特征。

结论

TMEscore 模型对预后和患者对免疫治疗的反应具有较高的预测价值。Signature 24 首先在乳腺癌中发现。与 TMEscore 和预后相关的特定突变特征可用于提供疾病评估的附加指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/915d/9071896/8caf413e5811/BMRI2022-5673810.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验