Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
PLoS One. 2021 Apr 26;16(4):e0249374. doi: 10.1371/journal.pone.0249374. eCollection 2021.
The aim of this study is to systematically analyze the transcriptional sequencing data of cervical cancer (CC) to find an Tumor microenvironment (TME) prognostic marker to predict the survival of CC patients.
The expression profiles and clinical follow-up information of CC were downloaded from the TCGA and GEO. The RNA-seq data of TCGA-CESC samples were used for CIBERSORT analysis to evaluate the penetration pattern of TME in 285 patients, and construct TMEscore. Other data sets were used to validate and evaluate TMEscore model. Further, survival analysis of TMEscore related DEGs was done to select prognosis genes. Functional enrichment and PPI networks analysis were performed on prognosis genes.
The TMEscore model has relatively good results in TCGA-CESC (HR = 2.47,95% CI = 1.49-4.11), TCGA-CESC HPV infection samples (HR = 2.13,95% CI = 1-4.51), GSE52903 (HR = 2.65, 95% CI = 1.06-6.6), GSE44001 (HR = 2.1, 95% CI = 0.99-4.43). Patients with high/low TMEscore have significant difference in prognosis (log-rank test, P = 0.00025), and the main difference between high TMEscore subtypes and low TMEscore subtypes is immune function-related pathways. Moreover, Kaplan-Meier survival curves found out a list of identified prognosis genes (n = 86) which interestingly show significant enrichment in immune-related functions. Finally, PPI network analysis shows that highly related nodes such as CD3D, CD3E, CD8A, CD27 in the module may become new targets of CC immunotherapy.
TMEscore may become a new prognostic indicator predicting the survival of CC patients. The prognostic genes (n = 86) may help provide new strategies for tumor immunotherapy.
本研究旨在系统分析宫颈癌(CC)的转录测序数据,寻找肿瘤微环境(TME)的预后标志物,以预测 CC 患者的生存情况。
从 TCGA 和 GEO 下载 CC 的表达谱和临床随访信息。使用 TCGA-CESC 样本的 RNA-seq 数据进行 CIBERSORT 分析,以评估 285 例患者的 TME 穿透模式,并构建 TMEscore。其他数据集用于验证和评估 TMEscore 模型。进一步对 TMEscore 相关 DEGs 的生存分析,筛选预后基因。对预后基因进行功能富集和 PPI 网络分析。
TMEscore 模型在 TCGA-CESC(HR=2.47,95%CI=1.49-4.11)、TCGA-CESC HPV 感染样本(HR=2.13,95%CI=1-4.51)、GSE52903(HR=2.65,95%CI=1.06-6.6)、GSE44001(HR=2.1,95%CI=0.99-4.43)中均有较好的结果。高/低 TMEscore 患者的预后有显著差异(对数秩检验,P=0.00025),高 TMEscore 亚型和低 TMEscore 亚型的主要区别在于免疫功能相关途径。此外,Kaplan-Meier 生存曲线发现了一组鉴定的预后基因(n=86),这些基因在免疫相关功能中表现出显著富集。最后,PPI 网络分析显示,模块中高度相关的节点,如 CD3D、CD3E、CD8A、CD27 等,可能成为 CC 免疫治疗的新靶点。
TMEscore 可能成为预测 CC 患者生存的新预后指标。预后基因(n=86)可能为肿瘤免疫治疗提供新的策略。