Suppr超能文献

关于三弧图的哈密顿分解问题

On Hamiltonian Decomposition Problem of 3-Arc Graphs.

作者信息

Xu Guangjun, Sun Qiang, Liang Zuosong

机构信息

School of Mathematics, Zunyi Normal University, Zunyi, Guizhou, China.

School of Mathematical Science, Yangzhou University, Yangzhou, China.

出版信息

Comput Intell Neurosci. 2022 Apr 28;2022:5837405. doi: 10.1155/2022/5837405. eCollection 2022.

Abstract

A 4-tuple (, , , ) in a graph is a 3-arc if each of (, , ) and (, , ) is a path. The 3-arc graph of is the graph with vertex set all arcs of and edge set containing all edges joining and whenever (, , , ) is a 3-arc of . A Hamilton cycle is a closed path meeting each vertex of a graph. A graph including a Hamilton cycle is called Hamiltonian and has a Hamiltonian decomposition provided its edge set admits a partition into disjoint Hamilton cycles (possibly with a single perfect matching). The current paper proves that every connected 3-arc graph consists of more than one Hamilton cycle. Since the 3-arc graph of a cubic graph is 4-regular, it further proves that each 3-arc graph of a cubic graph in a certain family has a Hamiltonian decomposition.

摘要

图中的一个四元组(, ,, )若满足(, ,, )和(, ,, )均为路径,则它是一条3 - 弧。图的3 - 弧图是这样一个图,其顶点集为图的所有弧,边集包含所有连接和的边,当(, ,, , )是图的一条3 - 弧时。哈密顿圈是一个与图的每个顶点都相交的闭路径。包含哈密顿圈的图称为哈密顿图,并且如果图的边集允许划分为不相交的哈密顿圈(可能带有一个完美匹配),则称该图具有哈密顿分解。本文证明了每个连通的3 - 弧图都由多个哈密顿圈组成。由于三次图的3 - 弧图是4 - 正则的,进一步证明了某一族三次图的每个3 - 弧图都具有哈密顿分解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9f3/9071931/81a1bc8781c5/CIN2022-5837405.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验