Almessiere M A, Slimani Y, Korkmaz A Demir, Baykal A, Güngüneş H, Sözeri H, Shirsath Sagar E, Güner S, Akhtar S, Manikandan A
Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 31441 Saudi Arabia
Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 31441 Saudi Arabia.
RSC Adv. 2019 Sep 26;9(53):30671-30684. doi: 10.1039/c9ra06353f.
In the current study, NiCuZnLa Y Fe O ( = 0.00 - 0.10) nanospinel ferrites (NSFs) were fabricated an ultrasonic irradiation route. The creation of single phase of spinel nanoferrites (NSFs) was investigated by X-ray powder diffractometry (XRD) and selected area diffraction pattern (SAED). The cubic morphology of all samples was confirmed by scanning and transmission electron microscopies (SEM and TEM) respectively. The UV-Vis investigations provided the direct optical energy band gap values in a narrow photon energy interval of 1.87-1.92 eV. The Fe Mössbauer spectroscopy analysis explained that the hyperfine magnetic fields of Octahedral (Oh) and Tetrahedral (Td) sites decreased with substitution. The paramagnetic properties of NPs decrease with increase of content of doped ions. Investigations of magnetic properties reveal a superparamagnetic nature at 300 K and soft ferromagnetic trait at 10 K. The (saturation magnetization) and (remanence) decrease and the (coercivity) increases slightly with La and Y substitution. The observed magnetic traits are deeply discussed in relation with the morphology, structure, magnetic moments and cation distributions. The microwave characterization of the prepared NSFs showed that, dissipation (, absorption) of incoming microwave energy occurs at a single frequency, for each sample, lying between 7 and 10.5 GHz. The reflection losses (RL) at these frequencies range from -30 to -40 dB and the mechanism of which is explained in the framework of dipolar relaxation and spin rotation. The best microwave properties were obtained with a LaY concentration of = 0.08 having an RL of -40 dB @ 10.5 GHz and an absorption bandwidth of 8.4 GHz @ -10 dB. With these high values of RL and absorbing bandwidth, LaY doped NiCuZn NSF products would be promising candidates for radar absorbing materials in the X-band.
在当前研究中,通过超声辐照路线制备了NiCuZnLaₓY₁₋ₓFe₂O₄(x = 0.00 - 0.10)纳米尖晶石铁氧体(NSFs)。通过X射线粉末衍射(XRD)和选区衍射花样(SAED)研究了尖晶石纳米铁氧体(NSFs)单相的形成。分别通过扫描电子显微镜和透射电子显微镜(SEM和TEM)确认了所有样品的立方形态。紫外-可见光谱研究给出了在1.87 - 1.92 eV的窄光子能量区间内的直接光学能带隙值。Fe穆斯堡尔谱分析表明,随着取代,八面体(Oh)和四面体(Td)位点的超精细磁场降低。纳米颗粒的顺磁性质随着掺杂离子含量的增加而降低。磁性研究揭示了在300 K时的超顺磁性质和在10 K时的软铁磁特性。随着La和Y取代,饱和磁化强度(Ms)和剩磁(Mr)降低,矫顽力(Hc)略有增加。结合形态、结构、磁矩和阳离子分布对观察到的磁性特征进行了深入讨论。所制备的NSFs的微波表征表明,对于每个样品,入射微波能量的耗散(tanδ,吸收)发生在7至10.5 GHz之间的单个频率处。这些频率下的反射损耗(RL)范围为 - 30至 - 40 dB,其机制在偶极弛豫和自旋旋转的框架内进行了解释。当LaY浓度x = 0.08时获得了最佳微波性能,在10.5 GHz时RL为 - 40 dB,在 - 10 dB时吸收带宽为8.4 GHz。凭借这些高的RL值和吸收带宽,LaY掺杂的NiCuZn NSF产品有望成为X波段雷达吸收材料的候选者。