Kehoe Daniel K, McCarthy Sarah A, Romeral Luis, Lyons Michael G, Gun'ko Yurii K
School of Chemistry, Amber & CRANN Institute, Trinity College Dublin Dublin 2 Ireland
BEACON, Bioeconomy Research Centre, University College Dublin Dublin 4 Ireland.
RSC Adv. 2019 Oct 2;9(53):31169-31176. doi: 10.1039/c9ra04801d. eCollection 2019 Sep 26.
Fuel cells have a number of benefits over conventional combustion-based technologies and can be used in a range of important applications, including transportation, as well as stationary, portable and emergency backup power systems. One of the major challenges in this field, however lies in controlling catalyst design which is critical for developing efficient and cost-effective fuel cell technology. Herein, for the first time, we report a facile controlled synthesis of Pt and RhPt dendritic nanowires using ultrathin AuAg nanowires as sacrificial templates. These dendritic nanowires exhibit remarkable catalytic performance in the elecrochemical oxidation of methanol and formic acid. In particular, the RhPt dendritic nanostructures show very high resistance to catalyst poisoning in methanol oxidation. This research demonstrates the advantages of using bimetallic dendritic nanostructures and we believe that these materials and electrocatalytic studies are important for further advancement of fuel cell research and technology.
与传统的基于燃烧的技术相比,燃料电池有许多优点,可用于一系列重要应用,包括交通运输以及固定式、便携式和应急备用电源系统。然而,该领域的主要挑战之一在于控制催化剂设计,这对于开发高效且具有成本效益的燃料电池技术至关重要。在此,我们首次报道了以超薄金银纳米线为牺牲模板,简便地控制合成铂和铑铂树枝状纳米线。这些树枝状纳米线在甲醇和甲酸的电化学氧化中表现出卓越的催化性能。特别是,铑铂树枝状纳米结构在甲醇氧化中对催化剂中毒表现出非常高的抗性。这项研究证明了使用双金属树枝状纳米结构的优势,我们相信这些材料和电催化研究对于燃料电池研究和技术的进一步发展很重要。