Aliee Mahsa, Mozaffari Mohammad Hazhir
Department of Electrical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
Plasmonics. 2022;17(4):1655-1660. doi: 10.1007/s11468-022-01651-6. Epub 2022 May 4.
Since the coronavirus pandemic began, research groups worldwide developed diagnostic tests. One of the promising platforms for testing is an optical and plasmonic biosensor. Localized surface plasmon resonances owing to their highly concentrated field intensity provide highly sensitive devices. A beneficial approach to excite localized surface plasmon modes for field-based applications is using photonic crystal fibers while photonic quasi-crystals demonstrate a higher order of symmetry, the more isotropic Brillouin zone, and the easier achievement of photonic bandgap as compared with conventional photonic crystals. In this work, by exploiting a photonic quasi-crystal fiber, we are designing a surface plasmon resonance biosensor for the on-chip and real-time detection of coronaviruses. In our miniaturized design, a thin gold layer is employed on the outer layer of an air hole of a photonic quasi-crystal fiber with a 12-fold symmetry where the leakage of the fiber core mode can excite the surface plasmon resonance mode on the gold. According to three-dimensional finite-difference time-domain simulations, the proposed biosensor shows the sensitivity of 1172 nm/RIU in the detection of coronaviruses within the saliva. Moreover, the smallest detection limit obtained in the simulation is about 12 nm. These promising results altogether indicate that this reconfigurable and lab-on-a-chip platform can potentially be used in the detection of all kinds of coronaviruses.
自新冠疫情爆发以来,全球的研究团队都在研发诊断测试方法。一种很有前景的测试平台是光学和等离子体生物传感器。由于其高度集中的场强,局域表面等离子体共振能够提供高灵敏度的设备。一种用于基于场的应用中激发局域表面等离子体模式的有效方法是使用光子晶体光纤,而光子准晶体与传统光子晶体相比,具有更高的对称性、更各向同性的布里渊区,并且更容易实现光子带隙。在这项工作中,通过利用光子准晶体光纤,我们正在设计一种用于芯片上实时检测冠状病毒的表面等离子体共振生物传感器。在我们的小型化设计中,在具有12重对称性的光子准晶体光纤气孔的外层采用了一层薄金层,光纤芯模的泄漏可以激发金表面的表面等离子体共振模式。根据三维时域有限差分模拟,所提出的生物传感器在检测唾液中的冠状病毒时显示出1172 nm/RIU的灵敏度。此外,模拟中获得的最小检测限约为12 nm。这些令人鼓舞的结果共同表明,这个可重构的芯片实验室平台有可能用于检测各种冠状病毒。