Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China.
Nanoscale. 2018 Nov 1;10(42):19927-19936. doi: 10.1039/c8nr07051b.
In this study, two-dimensional (2D), quasi-three-dimensional (3D), and 3D plasmonic photonic crystal (PPC) nanostructures with point-defect cavities were developed and fabricated using direct and reversal nanoimprint lithography. As a result of the hybrid coupling of localized surface plasmon resonance and Fabry-Perot cavity modes, the quasi-3D plasmonic nanoholes showed higher electromagnetic field intensity and sensitivity than the 2D plasmonic nanoholes. Specifically, the sensitivity of the quasi-3D plasmonic nanoholes was 483 nm per refractive index unit (RIU), whereas that of the 2D plasmonic nanoholes was 276 nm RIU-1. In addition, by enhancing electromagnetic field intensity around corners and generating an additional subradiant dark mode, the symmetrical breakage of the quasi-3D plasmonic nanoholes further increased the sensitivity to 946 nm RIU-1. Among all the nanostructures developed in the study, the 3D PPC nanostructures with point-defect cavities showed the highest sensitivity up to 1376 nm RIU-1 and highest figure of merit of 11.6 as the result of the hybrid coupling of plasmonics and photonic crystal modes with multilayered plasmonic nanostructures. The spacing between the 3D PPC nanostructures was comparable with the average size of exosomes derived from fibroblast L cells, which allowed the exosomes to spread around the 3D PPC nanostructures with increased sensing area. This effect further enhanced the detection sensitivity with a large peak shift of 9 nm when using the 3D PPC biosensor to detect exosomes at the concentration of 1 × 104 particles per ml, and the peak shift increased to 102 nm as exosome concentration increased to 1 × 1011 particles per ml.
在这项研究中,我们使用直接和反转纳米压印光刻技术开发并制造了具有点缺陷腔的二维(2D)、准三维(3D)和 3D 等离子体光子晶体(PPC)纳米结构。由于局域表面等离子体激元共振和 Fabry-Perot 腔模式的混合耦合,准 3D 等离子体纳米孔比 2D 等离子体纳米孔具有更高的电磁场强度和灵敏度。具体而言,准 3D 等离子体纳米孔的灵敏度为每折射率单位(RIU)483nm,而 2D 等离子体纳米孔的灵敏度为 276nm RIU-1。此外,通过增强拐角处的电磁场强度并产生附加的亚辐射暗模式,对称破坏的准 3D 等离子体纳米孔进一步将灵敏度提高到 946nm RIU-1。在研究中开发的所有纳米结构中,具有点缺陷腔的 3D PPC 纳米结构由于等离子体和光子晶体模式与多层等离子体纳米结构的混合耦合,具有最高的灵敏度,可达 1376nm RIU-1 和最高的品质因数 11.6。3D PPC 纳米结构的间距与源自成纤维细胞 L 细胞的外体的平均尺寸相当,这使得外体可以在 3D PPC 纳米结构周围扩散,从而增加了传感面积。当使用 3D PPC 生物传感器以 1×104 个颗粒/ml 的浓度检测外体时,这种效应进一步增强了检测灵敏度,产生了 9nm 的大峰移,并且当外体浓度增加到 1×1011 个颗粒/ml 时,峰移增加到 102nm。